Example #1
0
    def forward(self, data, config, gpu_list, acc_result, mode):
        context = data["context"]
        question = data["question"]

        batch = question.size()[0]
        option = question.size()[1]

        context = context.view(batch * option, -1)
        question = question.view(batch * option, -1)
        context = self.embedding(context)
        question = self.embedding(question)

        c, context = self.context_encoder(context)
        q, question = self.question_encoder(question)

        c = context.transpose(1, 2)
        q = question.transpose(1, 2)
        # c, q, a = self.attention(c, q)

        # y = torch.cat([torch.max(c, dim=1)[0], torch.max(q, dim=1)[0]], dim=1)
        # y = torch.cat([torch.mean(context, dim=1), torch.mean(question, dim=1)], dim=1)
        y = torch.cat([c, q], dim=1)
        # y = y.reshape(batch, self.hidden_size, -1)

        nets_doc_l = []
        for i in range(len(self.ngram_size)):
            nets = self.convs_doc[i](y)
            nets_doc_l.append(nets)
        nets_doc = torch.cat((nets_doc_l[0], nets_doc_l[1], nets_doc_l[2]), 2)
        poses_doc, activations_doc = self.primary_capsules_doc(nets_doc)
        poses, activations = self.flatten_capsules(poses_doc, activations_doc)
        poses, activations = self.compression(poses, self.W_doc)
        poses, type_logits = self.fc_capsules_doc_child(
            poses, activations, range(self.fc_size))  # 4 types in total.
        y = type_logits.squeeze(2)

        # y = y.view(batch * option, -1)
        # y = self.rank_module(y)
        # y = self.fc_module_q(a).squeeze(dim=2)
        # y = self.gelu(y)
        # y = self.dropout(y)
        # # # y = y.view(batch, option)
        y = self.fc_module(y)
        # y = torch.sigmoid(y)

        if mode != "test":
            label = data["label"]
            loss = self.bce(y, label)
            acc_result = self.accuracy_function(y, label, config, acc_result)
            return {"loss": loss, "acc_result": acc_result}

        return {"output": multi_generate_ans(data["id"], y)}
Example #2
0
    def forward(self, data, config, gpu_list, acc_result, mode):
        context = data["context"]
        question = data["question"]

        batch = question.size()[0]
        option = question.size()[1]

        # context = context.view(batch, -1)
        question = question.view(batch, -1)
        # context = self.embedding(context)
        question = self.embedding(question)

        context = self.context_encoder(context, self.context_len)
        _, question = self.question_encoder(question)

        c, q, a = self.attention(context[-1], question)

        # x = torch.cat([torch.max(c, dim=1)[0], torch.max(q, dim=1)[0]], dim=1)
        x = torch.cat([c, q], dim=1)
        if torch.cuda.is_available():
            x = x.transpose(1, 2).type(torch.cuda.FloatTensor)
        else:
            x = x.transpose(1, 2).type(torch.FloatTensor)

        nets_doc_l = []
        for i in range(len(self.ngram_size)):
            nets = self.convs_doc[i](x)
            nets_doc_l.append(nets)
        nets_doc = torch.cat((nets_doc_l[0], nets_doc_l[1], nets_doc_l[2]), 2)
        poses_doc, activations_doc = self.primary_capsules_doc(nets_doc)
        poses, activations = self.flatten_capsules(poses_doc, activations_doc)
        poses, activations = self.compression(poses, self.W_doc)
        poses, type_logits = self.fc_capsules_doc_child(
            poses, activations, range(4))  # 4 types in total.
        type_logits = type_logits.squeeze(2)
        # type_logits = self.fc_module(type_logits)

        # y = x.view(batch * option, -1)
        # y = self.rank_module(y)
        # y = y.view(batch, option)
        # y = self.multi_module(y)

        if mode != "test":
            label = data["label"]
            # loss = self.criterion(type_logits, label)
            loss = self.bce(type_logits, label)
            acc_result = self.accuracy_function(type_logits, label, config,
                                                acc_result)
            return {"loss": loss, "acc_result": acc_result}

        return {"output": multi_generate_ans(data["id"], type_logits)}
Example #3
0
    def forward(self, data, config, gpu_list, acc_result, mode):
        context = data["context"]
        question = data["question"]

        batch = question.size()[0]
        option = question.size()[1]

        context = context.view(batch * option, -1)
        question = question.view(batch * option, -1)
        context = self.embedding(context)
        question = self.embedding(question)

        _, context = self.context_encoder(context)
        _, question = self.question_encoder(question)

        # c, q, a = self.attention(context, question)

        # y = torch.cat([torch.max(c, dim=1)[0], torch.max(q, dim=1)[0]], dim=1)
        y = torch.cat([torch.mean(c, dim=1), torch.mean(q, dim=1)], dim=1)

        # y = y.view(batch * option, -1)
        # y = self.rank_module(y)
        # y = self.fc_module_q(a).squeeze(dim=2)
        y = self.gelu(y)
        y = self.dropout(y)
        # y = y.view(batch, option)
        y = self.fc_module(y)
        # y = torch.sigmoid(y)

        if mode != "test":
            label = data["label"]
            loss = self.bce(y, label)
            acc_result = self.accuracy_function(y, label, config, acc_result)
            return {"loss": loss, "acc_result": acc_result}

        return {"output": multi_generate_ans(data["id"], y)}