Example #1
0
    def __init__(self):
        """
        :param self.train_frames: how many frame are used for training
        :param self.num_of_vid: number of videos
        :param self.extractor: pretrained model for feature extraction
        :param self.G: what I want to training model
        :param self.optimizerG: optimizer (default: Adam)
        :param self.train_data: training data loader
        :param self.device: gpu or cpu device(default: gpu)
        """
        self.train_frames = args.train_frames
        self.num_of_vid = args.num_of_vid
        print("===> Building model")
        # Model Setting
        # prtrained model setting
        self.extractor = resnet101(num_classes=400,
                                   shortcut_type='B',
                                   cardinality=32,
                                   sample_size=args.crop_size,
                                   sample_duration=args.train_frames)

        # load pretrained model
        # eval 모드를 무조건 해야됨!
        weight = get_pretrain_weight(pretrain_path, self.extractor)
        self.extractor.load_state_dict(weight)
        self.extractor.eval()

        self.in_channel = args.in_channel
        self.G = BaseNet(self.in_channel * self.num_of_vid, self.train_frames,
                         self.num_of_vid)
        self.num_stage = args.num_stage

        # optimizer
        self.optimizerG = optim.Adam(self.G.parameters(),
                                     lr=args.lr,
                                     betas=(0.9, 0.999),
                                     eps=1e-8)
        # loss
        self.CE_loss = nn.CrossEntropyLoss()
        self.L1_loss = nn.L1Loss()
        self.L2_loss = nn.MSELoss()
        self.Softmax = nn.Softmax()
        # data
        self.train_data = train_data_loader
        # self.test_data = test_data_loader
        # training
        self.device = device
        self.epochs = args.epochs
        self.avg_G_loss_arr = []
        self.checkpoint = args.checkpoint
        self.checkpoint_set()

        # cuda
        if torch.cuda.is_available():
            self.extractor.cuda()
            self.G.cuda()
Example #2
0
    def __init__(self):
        self.train_frames = args.train_frames
        print("===> Building model")
        # Model Setting
        # prtrained model setting
        self.extractor = resnet101(num_classes=400,
                                   shortcut_type='B',
                                   cardinality=32,
                                   sample_size=args.crop_size,
                                   sample_duration=args.train_frames)

        # load pretrained model
        # eval 모드를 무조건 해야됨!
        weight = get_pretrain_weight(pretrain_path, self.extractor)
        self.extractor.load_state_dict(weight)
        self.extractor.eval()

        self.G = BaseNet(16384 * 4 * 4 * 4, 10)

        # optimizer
        self.optimizerG = optim.Adam(self.G.parameters(),
                                     lr=args.lr,
                                     betas=(0.9, 0.999),
                                     eps=1e-8)
        # loss
        self.BCE_loss = nn.BCELoss()
        self.L1_loss = nn.L1Loss()
        self.L2_loss = nn.MSELoss()
        # data
        self.train_data = train_data_loader
        # self.test_data = test_data_loader
        # training
        self.device = device
        self.epochs = args.epochs
        self.avg_G_loss_arr = []
        self.checkpoint = args.checkpoint

        # cuda
        if torch.cuda.is_available():
            self.extractor.cuda()
            self.G.cuda()

        # model save
        self.save_mname = args.save_model_name
        # checkpoint root
        make_dirs(log_path)
        self.log_dir = log_path + f'/{self.save_mname}'
        # self.load_check_dir =
        self.save_check_dir = make_dirs(self.log_dir) + '/' + 'checkpoint.pkl'

        # CSV logging system
        self.CSVlogger = LogCSV(log_dir=self.log_dir +
                                f"/{self.save_mname}_log.csv",
                                header=['epoch', 'avg_G_Loss', 'accuracy'])
Example #3
0
                           fm_use=args.fm_use)
        # I3D.replace_logits(157)  # Charades: 157   only used for load trained model
        # -----------load pre_train model -------- ------------
        Pre_tn_model = './model/pretred_mod/rgb_imagenet.pt'
        pretrained_dict = torch.load(Pre_tn_model)
        model_dict = I3D.state_dict()
        pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
        model_dict.update(pretrained_dict)
        I3D.load_state_dict(model_dict)
        I3D.replace_logits(157)  # used for load Knitices model
        Model = I3D
        train_trans = transforms.Compose([videotransform.IMG_resize(args.in_fm_sz, args.in_fm_sz),
                                          videotransform.ToTensor()])  # contain normalize
        # -----------load pre_train model --------------------
    elif args.arch == "R3D":
        R3D = resnext.resnet101(num_classes=400, shortcut_type='B', cardinality=32, sample_size=args.in_fm_sz,
                                sample_duration=args.fm_use, phase='train', Dense_out=False)
        R3D.replace_logits(157)
        # -----------load pre_train model --------------------
        # Pre_tn_model = './model/pretred_mod/resnext-101-kinetics.pth'
        Pre_tn_model = './model/pretred_mod/resnext-101-64f-kinetics.pth'
        # Pre_tn_model = './model/pretred_mod/R3D025_Charades_model.pth'
        pretrained_dict = torch.load(Pre_tn_model)
        model_dict = R3D.state_dict()
        pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
        model_dict.update(pretrained_dict)
        R3D.load_state_dict(model_dict)
        Model = R3D
        train_trans = transforms.Compose([videotransform.IMG_resize(args.in_fm_sz, args.in_fm_sz),
                                          videotransform.Normalize_R3D([114.7748, 107.7354, 99.4750], [1, 1, 1])])
        # -----------load pre_train model --------------------