Example #1
0
    def __init__(self, do_cuda=True): 
        self.lock = RLock()
        self.opts = rfnetOptions(do_cuda)
        print(self.opts)        

        print('rfnet init')

        #print(f"{gct()} model init")
        print("model init")
        det = RFDetSO(
            cfg.TRAIN.score_com_strength,
            cfg.TRAIN.scale_com_strength,
            cfg.TRAIN.NMS_THRESH,
            cfg.TRAIN.NMS_KSIZE,
            cfg.TRAIN.TOPK,
            cfg.MODEL.GAUSSIAN_KSIZE,
            cfg.MODEL.GAUSSIAN_SIGMA,
            cfg.MODEL.KSIZE,
            cfg.MODEL.padding,
            cfg.MODEL.dilation,
            cfg.MODEL.scale_list,
        )
        des = HardNetNeiMask(cfg.HARDNET.MARGIN, cfg.MODEL.COO_THRSH)
        model = RFNetSO(
            det, des, cfg.LOSS.SCORE, cfg.LOSS.PAIR, cfg.PATCH.SIZE, cfg.TRAIN.TOPK
        )

        device = torch.device("cuda")
        model = model.to(device)
        #resume = args.resume
        #resume = "/home/cviss3/PycharmProjects/gensynth_dev_env/pyslam/thirdparty/rfnet/runs/10_24_09_25/model/e121_NN_0.480_NNT_0.655_NNDR_0.813_MeanMS_0.649.pth.tar"
        resume = "/content/RFnetpyslam/thirdparty/rfnet/runs/10_24_09_25/model/e121_NN_0.480_NNT_0.655_NNDR_0.813_MeanMS_0.649.pth.tar"

        print('==> Loading pre-trained network.')
        checkpoint = torch.load(resume)
        model.load_state_dict(checkpoint["state_dict"])
        self.fe = model
        print('==> Successfully loaded pre-trained network.')

        self.device = device
        self.pts = []
        self.kps = []        
        self.des = []
        self.img = []
        self.heatmap = [] 
        self.frame = None 
        self.frameFloat = None 
        self.keypoint_size = 20  # just a representative size for visualization and in order to convert extracted points to cv2.KeyPoint 
Example #2
0
    print(f"{gct()} : Build the model")
    det = RFDetSO(
        cfg.TRAIN.score_com_strength,
        cfg.TRAIN.scale_com_strength,
        cfg.TRAIN.NMS_THRESH,
        cfg.TRAIN.NMS_KSIZE,
        cfg.TRAIN.TOPK,
        cfg.MODEL.GAUSSIAN_KSIZE,
        cfg.MODEL.GAUSSIAN_SIGMA,
        cfg.MODEL.KSIZE,
        cfg.MODEL.padding,
        cfg.MODEL.dilation,
        cfg.MODEL.scale_list,
    )
    des = HardNetNeiMask(cfg.HARDNET.MARGIN, cfg.MODEL.COO_THRSH)
    model = RFNetSO(det, des, cfg.LOSS.SCORE, cfg.LOSS.PAIR, cfg.PATCH.SIZE,
                    cfg.TRAIN.TOPK)
    if mgpu:
        model = torch.nn.DataParallel(model)
    model = model.to(device=device)

    ###############################################################################
    # Load train data
    ###############################################################################
    PPT = [cfg.PROJ.TRAIN_PPT, (cfg.PROJ.TRAIN_PPT + cfg.PROJ.EVAL_PPT)]

    print(f"{gct()} : Loading traning data")
    train_data = DataLoader(
        HpatchDataset(
            data_type="train",
            PPT=PPT,
            use_all=cfg.PROJ.TRAIN_ALL,
Example #3
0
model_file = "./model/e121_NN_0.480_NNT_0.655_NNDR_0.813_MeanMS_0.649.pth.tar"
det = RFDetSO(
    cfg.TRAIN.score_com_strength,
    cfg.TRAIN.scale_com_strength,
    cfg.TRAIN.NMS_THRESH,
    cfg.TRAIN.NMS_KSIZE,
    cfg.TRAIN.TOPK,
    cfg.MODEL.GAUSSIAN_KSIZE,
    cfg.MODEL.GAUSSIAN_SIGMA,
    cfg.MODEL.KSIZE,
    cfg.MODEL.padding,
    cfg.MODEL.dilation,
    cfg.MODEL.scale_list,
)
des = HardNetNeiMask(cfg.HARDNET.MARGIN, cfg.MODEL.COO_THRSH)
model = RFNetSO(det, des, cfg.LOSS.SCORE, cfg.LOSS.PAIR, cfg.PATCH.SIZE,
                cfg.TRAIN.TOPK)
model = model.to(device)
checkpoint = torch.load(model_file)
model.load_state_dict(checkpoint["state_dict"])
model.eval()


def distance_matrix_vector(anchor, positive):
    eps = 1e-8
    FeatSimi_Mat = 2 - 2 * torch.mm(anchor, positive.t())  # [0, 4]
    FeatSimi_Mat = FeatSimi_Mat.clamp(min=eps, max=4.0)
    FeatSimi_Mat = torch.sqrt(FeatSimi_Mat)  # euc [0, 2]

    return FeatSimi_Mat

    #输入模型参数
    det = RFDetSO(
        cfg.TRAIN.score_com_strength,
        cfg.TRAIN.scale_com_strength,
        cfg.TRAIN.NMS_THRESH,
        cfg.TRAIN.NMS_KSIZE,
        cfg.TRAIN.TOPK,
        cfg.MODEL.GAUSSIAN_KSIZE,
        cfg.MODEL.GAUSSIAN_SIGMA,
        cfg.MODEL.KSIZE,
        cfg.MODEL.padding,
        cfg.MODEL.dilation,
        cfg.MODEL.scale_list,
    )
    des = HardNetNeiMask(cfg.HARDNET.MARGIN, cfg.MODEL.COO_THRSH)
    model = RFNetSO(det, des, cfg.LOSS.SCORE, cfg.LOSS.PAIR, cfg.PATCH.SIZE,
                    cfg.TRAIN.TOPK)

    print(f"{gct()} : to device")
    device = torch.device("cuda")
    model = model.to(device)
    resume = args.resume
    print(f"{gct()} : in {resume}")
    checkpoint = torch.load(resume)
    model.load_state_dict(checkpoint["state_dict"])

    ###############################################################################
    # detect and compute
    ###############################################################################
    #split表示通过分隔符对字符串进行切割
    img1_path, img2_path = args.imgpath.split("@")
    kp1, des1, img1 = model.detectAndCompute(img1_path, device, (240, 320))
        cfg.TRAIN.scale_com_strength,
        cfg.TRAIN.NMS_THRESH,
        cfg.TRAIN.NMS_KSIZE,
        args.k,
        cfg.MODEL.GAUSSIAN_KSIZE,
        cfg.MODEL.GAUSSIAN_SIGMA,
        cfg.MODEL.KSIZE,
        cfg.MODEL.padding,
        cfg.MODEL.dilation,
        cfg.MODEL.scale_list,
    )
    des = HardNetNeiMask(cfg.HARDNET.MARGIN, cfg.MODEL.COO_THRSH)
    model = RFNetSO(
        det,
        des,
        cfg.LOSS.SCORE,
        cfg.LOSS.PAIR,
        cfg.PATCH.SIZE,
        args.k,
    )
    model = model.to(device)
    checkpoint = torch.load(model_file)
    model.load_state_dict(checkpoint["state_dict"])
    model.eval()

    random.seed(cfg.PROJ.SEED)
    torch.manual_seed(cfg.PROJ.SEED)
    np.random.seed(cfg.PROJ.SEED)

    root_dir = '/home/wang/workspace/RFSLAM_offline/RFNET/data/'
    csv_file = None
    seq = None
Example #6
0
    cfg.TRAIN.scale_com_strength,
    cfg.TRAIN.NMS_THRESH,
    cfg.TRAIN.NMS_KSIZE,
    1024,
    cfg.MODEL.GAUSSIAN_KSIZE,
    cfg.MODEL.GAUSSIAN_SIGMA,
    cfg.MODEL.KSIZE,
    cfg.MODEL.padding,
    cfg.MODEL.dilation,
    cfg.MODEL.scale_list,
)
des = HardNetNeiMask(cfg.HARDNET.MARGIN, cfg.MODEL.COO_THRSH)
model = RFNetSO(
    det,
    des,
    cfg.LOSS.SCORE,
    cfg.LOSS.PAIR,
    cfg.PATCH.SIZE,
    512,
)
model = model.to(device)

flop, para = profile(det, (torch.randn((1, 1, 640, 480), device=device), ))
'''
flop
6829056000.0 
para
Out[4]: 21890.0
'''
flop2, para2 = profile(des, (torch.randn((1000, 1, 32, 32), device=device), ))
'''
flop2
Example #7
0
model_file = "/home/wang/workspace/CVToolbox/benchmark/evaluationMMA/model/e121_NN_0.480_NNT_0.655_NNDR_0.813_MeanMS_0.649.pth.tar"
det = RFDetSO(
    cfg.TRAIN.score_com_strength,
    cfg.TRAIN.scale_com_strength,
    cfg.TRAIN.NMS_THRESH,
    cfg.TRAIN.NMS_KSIZE,
    cfg.TRAIN.TOPK,
    cfg.MODEL.GAUSSIAN_KSIZE,
    cfg.MODEL.GAUSSIAN_SIGMA,
    cfg.MODEL.KSIZE,
    cfg.MODEL.padding,
    cfg.MODEL.dilation,
    cfg.MODEL.scale_list,
)
des = HardNetNeiMask(cfg.HARDNET.MARGIN, cfg.MODEL.COO_THRSH)
model = RFNetSO(det, des, cfg.LOSS.SCORE, cfg.LOSS.PAIR, cfg.PATCH.SIZE,
                cfg.TRAIN.TOPK)
model = model.to(device)
checkpoint = torch.load(model_file)
model.load_state_dict(checkpoint["state_dict"])
model.eval()

img1_path = "./material/4_1.png"
img2_path = "./material/4_2.png"
img1 = cv2.imread(img1_path)
img2 = cv2.imread(img2_path)
width = img1.shape[1]
kp1, des1, _ = model.detectAndCompute(img1_path, device,
                                      (img1.shape[0], img1.shape[1]))
kp2, des2, _ = model.detectAndCompute(img2_path, device,
                                      (img2.shape[0], img2.shape[1]))
Example #8
0
print(f"{gct()} : model init")
det = RFDetSO(
    cfg.TRAIN.score_com_strength,
    cfg.TRAIN.scale_com_strength,
    cfg.TRAIN.NMS_THRESH,
    cfg.TRAIN.NMS_KSIZE,
    cfg.TRAIN.TOPK,
    cfg.MODEL.GAUSSIAN_KSIZE,
    cfg.MODEL.GAUSSIAN_SIGMA,
    cfg.MODEL.KSIZE,
    cfg.MODEL.padding,
    cfg.MODEL.dilation,
    cfg.MODEL.scale_list,
)
des = HardNetNeiMask(cfg.HARDNET.MARGIN, cfg.MODEL.COO_THRSH)
model = RFNetSO(det, des, cfg.LOSS.SCORE, cfg.LOSS.PAIR, cfg.PATCH.SIZE,
                cfg.TRAIN.TOPK)

print(f"{gct()} : to device")
device = torch.device("cuda")
model = model.to(device)
resume = '/home/wang/workspace/Faster-net2/runs/10_24_09_25/model/e121_NN_0.480_NNT_0.655_NNDR_0.813_MeanMS_0.649.pth.tar'
print(f"{gct()} : in {resume}")
checkpoint = torch.load(resume)
model.load_state_dict(checkpoint["state_dict"])


def to_cv2_kp(kp, scale, angle):
    # kp is like [batch_idx, y, x, channel]
    return cv2.KeyPoint(kp[2], kp[1], scale, angle)