Example #1
0
def main():
    parser = ArgumentParser()
    action_parser = parser.add_subparsers(title="actions",
                                          dest="action",
                                          required=True,
                                          help="select action to execute")

    # args for training
    train_parser = action_parser.add_parser("train",
                                            help="train the classifier")
    train_parser.add_argument("-r",
                              "--root-dir",
                              dest="root_dir",
                              required=True,
                              help="root directory of the dataset")
    train_parser.add_argument("-d",
                              "--data-key",
                              dest="data_key",
                              required=True,
                              help="name of the dataset")
    train_parser.add_argument("-m",
                              "--model-name",
                              dest="model_key",
                              required=True,
                              help="model to be used for training")
    train_parser.add_argument("-s",
                              "--save-path",
                              dest="save_path",
                              required=True,
                              help="save path for trained model")

    # args for testing
    test_parser = action_parser.add_parser("test", help="test the classifier")
    test_parser.add_argument("-r",
                             "--root-dir",
                             dest="root_dir",
                             required=True,
                             help="root directory of the dataset")
    test_parser.add_argument("-d",
                             "--data-key",
                             dest="data_key",
                             required=True,
                             help="name of the dataset")
    test_parser.add_argument("-m",
                             "--model-name",
                             dest="model_key",
                             required=True,
                             help="model to be used for testing")
    test_parser.add_argument("-s",
                             "--save-path",
                             dest="save_path",
                             required=True,
                             help="save path of the trained model")

    args_dict = vars(parser.parse_args())
    init_logger(args_dict)
    logging.info(f'User Arguments: {args_dict}!!!')
    run(**vars(parser.parse_args()))
def main(n: str, compute_qf: str):
    params = {**RUN_PARAMS}

    if n is not None:
        params['GITCOIN_TIMESTEPS'] = n

    if compute_qf is not None:
        params['GITCOIN_COMPUTE_QF'] = compute_qf

    for (key, value) in params.items():
        os.environ[key] = value

    print("Preparing simulation")
    from model.run import run
    print("Run simuation")
    result = run()

    print(f"Simulation executed! Pickling result to {PICKLE_PATH}")
    with open(PICKLE_PATH, 'wb') as fid:
        cloudpickle.dump(result, fid)
    print("Results pickled sucessfuly")
Example #3
0
from model import run

# Run training and test
run.run()
Example #4
0
# In[1]:

# Dependences
import pandas as pd
import numpy as np

# Experiments
from model import run
pd.options.display.float_format = '{:.2f}'.format

# get_ipython().run_line_magic('matplotlib', 'inline')
# %matplotlib inline

# run the simulation
df = run.run()

# In[ ]:

# observe the dataset

# In[2]:

df.head()

# In[ ]:

# plot the data

# In[3]: