default='', metavar='TD', help='name of saved model (default: ' ')') args = parser.parse_args() batch_loader = BatchLoader('', custom_index=True, train_data_name=args.sample_data) parameters = Parameters(batch_loader.max_word_len, batch_loader.max_seq_len, batch_loader.words_vocab_size, batch_loader.chars_vocab_size) rvae = RVAE(parameters) rvae.load_state_dict(t.load('./trained_model/{}'.format(args.model_name))) if args.use_cuda: rvae = rvae.cuda() sampler = rvae.latent_sampler(batch_loader) zs = {} for i in range( 0, int(batch_loader.total_lines('train') / args.batch_size) + 1): indexes = np.array( range( i * args.batch_size, min((i + 1) * args.batch_size, batch_loader.total_lines('train'))))
type=bool, default=True, metavar='CUDA', help='use cuda (default: True)') parser.add_argument('--num-sample', type=int, default=100, metavar='NS', help='num samplings (default: 10)') args = parser.parse_args() batch_loader = BatchLoader('') parameters = Parameters(batch_loader.max_word_len, batch_loader.max_seq_len, batch_loader.words_vocab_size, batch_loader.chars_vocab_size) rvae = RVAE(parameters) rvae.load_state_dict(t.load('trained_RVAE_code')) if args.use_cuda: rvae = rvae.cuda() with open("code_sampling_100.txt", 'w') as cs: for iteration in range(args.num_sample): seed = np.random.normal(size=[1, parameters.latent_variable_size]) result = rvae.sample(batch_loader, 50, seed, args.use_cuda) # print(result) # print() cs.write(result + '\n')
'data/super/characters_vocab_2.pkl'] tensor_files = [['data/super/train_word_tensor_2.npy'], ['data/super/train_character_tensor_2.npy']] batch_loader_2 = BatchLoader(data_files, idx_files, tensor_files) parameters_2 = Parameters(batch_loader_2.max_word_len, batch_loader_2.max_seq_len, batch_loader_2.words_vocab_size, batch_loader_2.chars_vocab_size) '''======================================== RVAE loading ================================================== ''' print ('Started loading') start_time = time.time() rvae = RVAE(parameters,parameters_2) rvae.load_state_dict(t.load(args.save_model)) if args.use_cuda: rvae = rvae.cuda() loading_time=time.time() - start_time print ('Time elapsed in loading model =' , loading_time) print ('Finished loading') ''' ==================================== Parameters Initialising =========================================== ''' n_best = args.beam_top beam_size =args.beam_size assert n_best <= beam_size use_cuda = args.use_cuda
parser.add_argument('--use-trained', type=bool, default=False, metavar='UT', help='load pretrained model (default: False)') parser.add_argument('--ce-result', default='', metavar='CE', help='ce result path (default: '')') parser.add_argument('--kld-result', default='', metavar='KLD', help='ce result path (default: '')') args = parser.parse_args() batch_loader = BatchLoader('') parameters = Parameters(batch_loader.max_word_len, batch_loader.max_seq_len, batch_loader.words_vocab_size, batch_loader.chars_vocab_size) rvae = RVAE(parameters) if args.use_trained: rvae.load_state_dict(t.load('trained_RVAE')) if args.use_cuda: rvae = rvae.cuda() optimizer = Adam(rvae.learnable_parameters(), args.learning_rate) train_step = rvae.trainer(optimizer, batch_loader) validate = rvae.validater(batch_loader) ce_result = [] kld_result = [] for iteration in range(args.num_iterations):
path + 'data/super/valid_word_tensor_2.npy' ], [ path + 'data/super/train_character_tensor_2.npy', path + 'data/super/valid_character_tensor_2.npy' ]] batch_loader_2 = BatchLoader(data_files, idx_files, tensor_files, path) parameters_2 = Parameters(batch_loader_2.max_word_len, batch_loader_2.max_seq_len, batch_loader_2.words_vocab_size, batch_loader_2.chars_vocab_size) '''======================================== RVAE creation ================================================== ''' rvae = RVAE(parameters, parameters_2) rvae.load_state_dict(t.load('trained_RVAE')) if args.use_cuda: rvae = rvae.cuda() n_best = 3 beam_size = 10 assert n_best <= beam_size for i in range(args.num_sentence): '''================================================== Input Encoder-1 ======================================================== ''' use_cuda = 1 input = batch_loader.next_batch(1, 'valid', i) input = [Variable(t.from_numpy(var)) for var in input]
#load data data = 0 with open('train.txt', 'r') as f: data = f.readlines() preprocess = Preprocess(embedding_model) input = preprocess.to_sequence(data) # embedding=preprocess.embedding() # np.save('embedding',embedding) batch_loader = Batch(input, 0.7) params=Parameter(word_embed_size=300,encode_rnn_size=600,latent_variable_size=1400,\ decode_rnn_size=600,vocab_size=preprocess.vocab_size,embedding_path='embedding.npy') model = RVAE(params) model = model.cuda() optimizer = Adam(model.learnable_parameters(), 1e-3) train_step = model.trainer(optimizer) use_cuda = t.cuda.is_available() ce_list = [] kld_list = [] coef_list = [] test_batch = batch_loader.test_next_batch(1) for i, batch in enumerate(batch_loader.train_next_batch(1)): # if i%20==0: # sample=next(test_batch) # sentence=model.sample(10,sample,use_cuda) # sentence=[preprocess.index_to_word(i) for i in sentence]
# help='ce result path (default: '')') # parser.add_argument('--kld-result', default='', metavar='KLD', # help='ce result path (default: '')') args = parser.parse_args() batch_loader = BatchLoader(path='', custom_index=False, train_data_name=args.train_data) parameters = Parameters(batch_loader.max_word_len, batch_loader.max_seq_len, batch_loader.words_vocab_size, batch_loader.chars_vocab_size) rvae = RVAE(parameters) optimizer = Adam(rvae.learnable_parameters(), args.learning_rate) if args.use_trained: rvae.load_state_dict( t.load('./trained_model/{}_trained_{}'.format( args.train_data.split('.')[0], args.start_epoch))) optimizer.load_state_dict( t.load('./trained_model/{}_trained_optimizer_{}'.format( args.train_data.split('.')[0], args.start_epoch))) if args.use_cuda: rvae = rvae.cuda() train_step = rvae.trainer(optimizer, batch_loader) validate = rvae.validater(batch_loader)
metavar='TD', help='load custom training dataset (default: ' ')') args = parser.parse_args() batch_loader = BatchLoader(path='', custom_index=False, train_data_name=args.train_data) parameters = Parameters(batch_loader.max_word_len, batch_loader.max_seq_len, batch_loader.words_vocab_size, batch_loader.chars_vocab_size) rvae = RVAE(parameters) rvae.load_state_dict(t.load('./trained_model/{}'.format(args.model_name))) if args.use_cuda: rvae = rvae.cuda() sents = [] seeds = {} for iteration in range(args.num_sample): seed = np.random.normal(size=[1, parameters.latent_variable_size]) sent = rvae.sample(batch_loader, 50, seed, args.use_cuda) print(sent) sents.append(sent) seeds[sent] = seed.flatten() with open(
path + 'data/super/train_word_tensor_2.npy', path + 'data/super/valid_word_tensor_2.npy' ], [ path + 'data/super/train_character_tensor_2.npy', path + 'data/super/valid_character_tensor_2.npy' ]] batch_loader_2 = BatchLoader(data_files, idx_files, tensor_files, path) parameters_2 = Parameters(batch_loader_2.max_word_len, batch_loader_2.max_seq_len, batch_loader_2.words_vocab_size, batch_loader_2.chars_vocab_size) '''================================================================================================= ''' rvae = RVAE(parameters, parameters_2) if args.use_trained: rvae.load_state_dict(t.load('trained_RVAE')) if args.use_cuda: rvae = rvae.cuda() optimizer = Adam(rvae.learnable_parameters(), args.learning_rate) train_step = rvae.trainer(optimizer, batch_loader, batch_loader_2) validate = rvae.validater(batch_loader, batch_loader_2) ce_result = [] kld_result = [] start_index = 0 # start_index_2 = 0
metavar='UT', help='load pretrained model (default: False)') parser.add_argument('--model-name', default='', metavar='MN', help='name of model to save (default: ' ')') args = parser.parse_args() batch_loader = BatchLoader('') parameters = Parameters(batch_loader.max_word_len, batch_loader.max_seq_len, batch_loader.words_vocab_size, batch_loader.chars_vocab_size) rvae = RVAE(parameters) ce_result = [] kld_result = [] if args.use_trained: rvae.load_state_dict( t.load('saved_models/trained_RVAE_' + args.model_name)) ce_result = list( np.load('saved_models/ce_result_{}.npy'.format(args.model_name))) kld_result = list( np.load('saved_models/kld_result_npy_{}.npy'.format( args.model_name))) if args.use_cuda: rvae = rvae.cuda()
parser.add_argument('--use-trained', type=bool, default=False, metavar='UT', help='load pretrained model (default: False)') parser.add_argument('--ce-result', default='', metavar='CE', help='ce result path (default: '')') parser.add_argument('--kld-result', default='', metavar='KLD', help='ce result path (default: '')') args = parser.parse_args() batch_loader = BatchLoader('') parameters = Parameters(batch_loader.max_word_len, batch_loader.max_seq_len, batch_loader.words_vocab_size, batch_loader.chars_vocab_size) rvae = RVAE(parameters) if args.use_trained: rvae.load_state_dict(t.load('trained_RVAE')) if args.use_cuda: rvae = rvae.cuda() optimizer = Adam(rvae.learnable_parameters(), args.learning_rate) train_step = rvae.trainer(optimizer) # validate = rvae.validater() ce_result = [] kld_result = [] # training_data = batch_loader.training_data('train') # validation_data = batch_loader.training_data('valid')
parser.add_argument('--model-name', default='', metavar='MN', help='name of model to save (default: ' ')') args = parser.parse_args() assert os.path.exists('saved_models/trained_RVAE_' + args.model_name), \ 'trained model not found' batch_loader = BatchLoader('') parameters = Parameters(batch_loader.max_word_len, batch_loader.max_seq_len, batch_loader.words_vocab_size, batch_loader.chars_vocab_size) rvae = RVAE(parameters) rvae.load_state_dict(t.load('saved_models/trained_RVAE_' + args.model_name)) if args.use_cuda: rvae = rvae.cuda() with open(args.input_file) as f: source_phrases = f.readlines() source_phrases = [x.strip() for x in source_phrases] for input_phrase in source_phrases: # embed print('input: ', input_phrase) print('sampled: ') for iteration in range(args.num_sample): print(rvae.conditioned_sample(input_phrase, batch_loader, args))
type=bool, default=True, metavar='CUDA', help='use cuda (default: True)') # parser.add_argument('--num-sample', type=int, default=10, metavar='NS', # help='num samplings (default: 10)') args = parser.parse_args() batch_loader = BatchLoader('') parameters = Parameters(batch_loader.max_word_len, batch_loader.max_seq_len, batch_loader.words_vocab_size, batch_loader.chars_vocab_size) rvae = RVAE(parameters) rvae.load_state_dict(torch.load('trained_RVAE')) if args.use_cuda: rvae = rvae.cuda() seq_len = 50 seed = np.random.normal(size=[1, parameters.latent_variable_size]) data = [["how are you ?"], ["how are you doing"]] data_words = [[line.split() for line in target] for target in data] word_tensor = np.array( [[list(map(batch_loader.word_to_idx.get, line)) for line in target] for target in data_words]) character_tensor = np.array( [[list(map(batch_loader.encode_characters, line)) for line in target]