Example #1
0
    for epoch in range(epochs):
        t0 = time.time()

        loss_train = 0
        loss_test = 0
        acc_train = 0
        acc_test = 0

        #print("epoch: {}\t".format(epoch), end="")

        # training
        n_batch = len(X_train) // batch_size
        #for _ in range(n_batch):
        for _ in tqdm(range(n_batch), total=n_batch):
            X_batch, y_batch = utils.get_batch_data(X_train_doc, y_train,
                                                    batch_size)
            X_batch_emb = embedding_bert.get_batch_emb(X_batch, doc_len,
                                                       sen_len, tokenizer,
                                                       estimator)
            X_batch_emb = X_batch_emb[:, :, 0, :]
            X_batch_seq, _ = embedding_bert.get_batch_seq(X_batch,
                                                          doc_len,
                                                          sen_len,
                                                          tokenizer,
                                                          tol=2)
            _, loss, acc, atten_w = sess.run(
                [optimizer, cost, accuracy, soft_atten_weights],
                feed_dict={
                    X_emb: X_batch_emb,
                    y: y_batch,
                    seq_length: X_batch_seq,

x = utils.token_sens(xx_clean, sentence_size = 30, word_to_idx = word_to_idx)
x.shape


# In[ ]:





# In[16]:


a, b = utils.get_batch_data(X_train, y_train, batch_size = 5)
a_clean = utils.replace_contr(a, contractions)
a_clean.shape, b.shape


# In[17]:


a, a_clean, b


# In[ ]:



Example #3
0
# In[ ]:





# ## Predict section

# In[30]:


with tf.Session() as sess:
    saver.restore(sess, savepath)
    
    X_batch, y_batch = utils.get_batch_data(X_test, y_test, 10)
    X_batch_emb = embedding_bert.get_batch_emb(X_batch, doc_len, sen_len, tokenizer, estimator)
    X_batch_emb = np.squeeze(X_batch_emb, axis = 1)
    _, X_batch_seq = embedding_bert.get_batch_seq(X_batch, doc_len, sen_len, tokenizer, tol = 2)
    atten_w, y_proba = sess.run([soft_atten_weights, Y_proba], feed_dict={X_emb: X_batch_emb, 
                                                                          seq_length: X_batch_seq, is_training:False})
    
    y_pred = np.argmax(y_proba, axis = 1)


# In[31]:


X_batch, y_batch, y_pred