def qmodel(name, device):
    if name == "resnet18":
        return ResNet18().to(device)
    elif name == "resnet34":
        return ResNet34().to(device)
    elif name == "resnet50":
        return ResNet50().to(device)
    elif name == "resnet101":
        return ResNet101().to(device)
    elif name == "resnet152":
        return ResNet152().to(device)
    elif name == "vgg11":
        return VGG("VGG11").to(device)
    elif name == "vgg13":
        return VGG("VGG13").to(device)
    elif name == "vgg16":
        return VGG("VGG16").to(device)
    elif name == "vgg19":
        return VGG("VGG19").to(device)
    elif name == "densenet121":
        return DenseNet121().to(device)
    elif name == "densenet169":
        return DenseNet169().to(device)
    elif name == "densenet201":
        return DenseNet201().to(device)
    elif name == "resnext":
        return ResNeXt29_8x64d().to(device)
Example #2
0
def get_model(model_name, pho_size=299, num_classes=110):
    if model_name == "vgg16":
        model = VGG(num_classes=num_classes, pho_size=299)
    elif model_name == "resnet101":
        model = resnet101(num_classes=num_classes)
    elif model_name == "resnet152":
        model = resnet152(num_classes=num_classes)
    elif model_name == "densenet":
        model = DenseNet(growth_rate=12,
                         block_config=[(100 - 4) // 6 for _ in range(3)],
                         num_classes=num_classes,
                         small_inputs=False,
                         efficient=True,
                         pho_size=pho_size)
    elif model_name == "InceptionResNetV2":
        model = InceptionResNetV2(num_classes=num_classes)
    elif model_name == "InceptionV4":
        model = InceptionV4(num_classes=num_classes)
    elif model_name == "Inception3":
        model = Inception3(num_classes=num_classes)
    elif model_name == "denoise":
        model = get_denoise()
    elif model_name == "Mymodel":
        model = Mymodel()
    elif model_name == 'Comdefend':
        model = ComDefend()
    elif model_name == 'Rectifi':
        model = Rectifi()
    return model
Example #3
0
    def __init__(self, channel=32):
        super(MQP_VGG_regression, self).__init__()
        self.vgg = VGG()
        self.rfb3_1 = RFB(256, channel)
        self.rfb4_1 = RFB(512, channel)
        self.rfb5_1 = RFB(512, channel)
        self.agg1 = aggregation(channel)

        self.rfb3_2 = RFB(256, channel)
        self.rfb4_2 = RFB(512, channel)
        self.rfb5_2 = RFB(512, channel)
        self.agg2 = aggregation(channel)

        self.HA = HA()
        self.upsample = nn.Upsample(scale_factor=4,
                                    mode='bilinear',
                                    align_corners=False)
Example #4
0
def build_model(args):
    if 'vgg' in args.backbone:
        return VGG(args)

    elif 'res' in args.backbone:
        return build_ResNet(args)
    
    elif 'dense' in args.backbone:
        return build_DenseNet(args)

    elif 'efficient' in args.backbone:
        return build_EfficientNet(args)
Example #5
0
def get_model(model_name):
    if model_name=="vgg16":
        model=VGG(num_classes=110)
    elif model_name=="resnet101":
        model=resnet101(num_classes=1000)
    elif model_name=="densenet":
        model=DenseNet(
        growth_rate=12,
        block_config=[(100 - 4) // 6 for _ in range(3)],
        num_classes=110,
        small_inputs=False,
        efficient=True,
    )
    else:
        model=None
    return model
def get_model(model_name):
    if model_name == 'resnet':
        from model.resnet import ResNet18
        net = ResNet18(10)
    elif model_name == 'lenet':
        from model.lenet import LeNet
        net = LeNet(10)
    elif model_name == 'densenet':
        from model.densenet import DenseNet
        net = DenseNet(growthRate=12,
                       depth=40,
                       reduction=0.5,
                       bottleneck=True,
                       nClasses=10)
    elif model_name == 'vgg':
        from model.vgg import VGG
        net = VGG('VGG16', num_classes=10)

    return net
Example #7
0
class MQP_VGG_regression(nn.Module):
    def __init__(self, channel=32):
        super(MQP_VGG_regression, self).__init__()
        self.vgg = VGG()
        self.rfb3_1 = RFB(256, channel)
        self.rfb4_1 = RFB(512, channel)
        self.rfb5_1 = RFB(512, channel)
        self.agg1 = aggregation(channel)

        self.rfb3_2 = RFB(256, channel)
        self.rfb4_2 = RFB(512, channel)
        self.rfb5_2 = RFB(512, channel)
        self.agg2 = aggregation(channel)

        self.HA = HA()
        self.upsample = nn.Upsample(scale_factor=4,
                                    mode='bilinear',
                                    align_corners=False)

    def forward(self, x):
        x1 = self.vgg.conv1(x)
        x2 = self.vgg.conv2(x1)
        x3 = self.vgg.conv3(x2)

        x3_1 = x3
        x4_1 = self.vgg.conv4_1(x3_1)
        x5_1 = self.vgg.conv5_1(x4_1)
        x3_1 = self.rfb3_1(x3_1)
        x4_1 = self.rfb4_1(x4_1)
        x5_1 = self.rfb5_1(x5_1)
        attention = self.agg1(x5_1, x4_1, x3_1)

        x3_2 = self.HA(attention.sigmoid(), x3)
        x4_2 = self.vgg.conv4_2(x3_2)
        x5_2 = self.vgg.conv5_2(x4_2)
        x3_2 = self.rfb3_2(x3_2)
        x4_2 = self.rfb4_2(x4_2)
        x5_2 = self.rfb5_2(x5_2)
        detection = self.agg2(x5_2, x4_2, x3_2)

        return self.upsample(attention), self.upsample(detection)
Example #8
0
if model_name == 'resnet':
    from model.resnet import ResNet18
    net = ResNet18(10)
elif model_name == 'lenet':
    from model.lenet import LeNet
    net = LeNet(10)
elif model_name == 'densenet':
    from model.densenet import DenseNet
    net = DenseNet(growthRate=12,
                   depth=40,
                   reduction=0.5,
                   bottleneck=True,
                   nClasses=10)
elif model_name == 'vgg':
    from model.vgg import VGG
    net = VGG('VGG16', num_classes=10)

if resume:
    # Load checkpoint.
    print('==> Resuming from checkpoint..')
    assert os.path.isdir(save_path), 'Error: no checkpoint directory found!'
    checkpoint = torch.load(save_path + '/%s_ckpt.t7' % model_name)
    net.load_state_dict(checkpoint['net'])

if use_cuda:
    Device = int(sys.argv[3])
    #    Device = 0
    net.cuda(Device)
    cudnn.benchmark = True

criterion = nn.CrossEntropyLoss()
                sys.stdout.flush()
            self._loss += _loss
            self.model.zero_grad()
            processed_image.requires_grad_(False)
            created_image = recreate_image(processed_image, self.ImageNet,
                                           self.reshape)
            images.append(created_image)
        self._loss /= self._n
        self._layer_name = 'output'
        self._save(images)

    def _save(self, x):
        path = '../save/para/[' + self.model.name + ']/'
        if not os.path.exists(path): os.makedirs(path)
        if type(x) == list:
            file = self._layer_name + ' (vis), loss = {:.4f}'.format(
                self._loss)
            _save_multi_img(x, int(np.sqrt(self._n)), path=path + file)
        else:
            file = self._layer_name + ' (vis), loss = {:.4f}'.format(
                self._loss)
            _save_img(x, path=path + file)
        sys.stdout.write('\r')
        sys.stdout.flush()
        print("Visual saved in: " + path + file + " " * 25)


if __name__ == '__main__':
    from model.vgg import VGG
    vgg = VGG('vgg11', batch_norm=True, load_pre=True)
    vgg._visual('weight', filter_id=0, epoch=100)
Example #10
0
from model.vgg import VGG
from swapper import Swapper

TARGET_LAYERS = ['relu3_1', 'relu2_1', 'relu1_1']

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--patch_size', default=3)
    parser.add_argument('--stride', default=1)

    args, unknown = parser.parse_known_args()

    model = VGG(model_type='vgg19').to(device)
    swapper = Swapper(args.patch_size, args.stride).to(device)

    dataset = SwappingDataset('CUFED5')
    data_loader = DataLoader(dataset, batch_size=1, num_workers=4)

    save_path = os.path.join(dataset.path, 'texture')
    os.makedirs(save_path, exist_ok=True)

    print("Offline Swapping...")
    for i, (data) in enumerate(data_loader):
        input_imgs, lowRef_imgs, highRef_imgs, filenames = data
        input_imgs = input_imgs.to(device)
        lowRef_imgs = lowRef_imgs.to(device)
        highRef_imgs = highRef_imgs.to(device)
if __name__ == '__main__':
    import cv2
    import torch
    from model.vgg import VGG
    from model.cnn import CNN

    start_p = time.perf_counter()

    # os.environ["CUDA_VISIBLE_DEVICES"] = "3,2,1"

    # load image for text
    image_path = './test/text/1032838434.jpg'
    img = cv2.imread(image_path) # ndarray

    # load model
    textModel = VGG(3).cuda()
    checkpoint = torch.load(textPath)
    textModel.load_state_dict(checkpoint)
    print(textModel)

    ocrModel = CNN(1).cuda()
    checkpoint = torch.load(ocrPath)
    ocrModel.load_state_dict(checkpoint)
    print(ocrModel)

    end = time.perf_counter()
    print('Load Model time is {}'.format(end - start_p))

    text = text_ocr(img, textModel, ocrModel)

    end_p = time.perf_counter()
Example #12
0
import numpy as np

import web
web.config.debug = False
render = web.template.render('templates', base='base')

from main import text_ocr
from helper.image import read_url_img, base64_to_PIL, get_now
from config import ocrPath, textPath, GPU

# load model
import torch
from model.vgg import VGG
from model.cnn import CNN

textModel = VGG(3).cuda() if GPU else VGG(3)
checkpoint = torch.load(textPath)
textModel.load_state_dict(checkpoint)
print(textModel)

ocrModel = CNN(1).cuda() if GPU else CNN(1)
checkpoint = torch.load(ocrPath)
ocrModel.load_state_dict(checkpoint)
print(ocrModel)

billList = []
root = './test/'
timeOutTime = 5


def job(uid, url, imgString, iscut, isclass, billModel, ip):
    scores, boxes, rate, w, h = detect_box(
        model, image, scale, maxScale)  # textModel, image is opencv image
    size = (h, w)
    text_lines, scores =detectors.detect( boxes,scores,size,\
           TEXT_PROPOSALS_MIN_SCORE,TEXT_PROPOSALS_NMS_THRESH,TEXT_LINE_NMS_THRESH,TEXT_LINE_SCORE)
    if len(text_lines) > 0:
        text_lines = text_lines / rate
    return text_lines, scores


if __name__ == '__main__':

    os.environ["CUDA_VISIBLE_DEVICES"] = "3,2,1"

    sys.path.append('../')
    from model.vgg import VGG

    img = cv2.imread('../test/text/1032838434.jpg')
    print(img.shape)

    scale = 900
    maxScale = 1800

    model = VGG(3).cuda()
    checkpoint = torch.load('../weight/text/text.pth.tar')
    model.load_state_dict(checkpoint)

    boxes, scores = detect_lines(model, img, scale=scale, maxScale=maxScale)
    print(scores)
    print(boxes)
Example #14
0
        D1 = models.vgg16(pretrained=True).cuda()
        D1 = nn.DataParallel(D1)
        D1.eval()

        D2 = models.resnet50(pretrained=True).cuda()
        D2 = nn.DataParallel(D2)
        D2.eval()

        num_classes = 1000
        img_size = 224
        img_ch = 3
        clipmax = [2.249, 2.429, 2.640]
        clipmin = [-2.118, -2.036, -1.804]
    elif args.dataset == 'cifar10':
        D1_path = os.path.join(load_dir, 'D1_network.pth')
        D1 = VGG('VGG16').cuda()
        D1.load_state_dict(torch.load(D1_path))
        D1.eval()

        D2_path = os.path.join(load_dir, 'D2_network.pth')
        D2 = ResNet50().cuda()
        D2.load_state_dict(torch.load(D2_path))
        D2.eval()

        num_classes = 10
        img_size = 32
        img_ch = 3
        clipmax = 1.
        clipmin = 0.
    else:
        D2_path = os.path.join(load_dir, 'Netll_mnist.pth')
Example #15
0
if model_name == 'resnet':
    from model.resnet import ResNet18
    net = ResNet18(10)
elif model_name == 'lenet':
    from model.lenet import LeNet
    net = LeNet(10)
elif model_name == 'densenet':
    from model.densenet import DenseNet
    net = DenseNet(growthRate=12,
                   depth=40,
                   reduction=0.5,
                   bottleneck=True,
                   nClasses=10)
elif model_name == 'vgg':
    from model.vgg import VGG
    net = VGG('VGG16')

if resume:
    # Load checkpoint.
    print('==> Resuming from checkpoint..')
    assert os.path.isdir(save_path), 'Error: no checkpoint directory found!'
    checkpoint = torch.load(save_path + '/%s_ckpt.t7' % model_name)
    net.load_state_dict(checkpoint['net'])

if use_cuda:
    Device = int(sys.argv[3])
    #    Device = 0
    net.cuda(Device)
    cudnn.benchmark = True

criterion = nn.CrossEntropyLoss()
Example #16
0
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=0)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=16, shuffle=True, num_workers=0)

classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

# net = MobileNet().cuda()
# net = MobileNetV2(n_class=10, input_size=32).cuda()
# net = ResNet18().cuda()
net = VGG("VGG19").cuda()

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)

criterion = criterion.cuda()

for epoch in range(120):
    net.train()
    for i, data in enumerate(trainloader, start=1):
        inputs, labels = data
        inputs = inputs.cuda()
        labels = labels.cuda()

        outputs = net(inputs)
        loss = criterion(outputs, labels)
Example #17
0
            if args.sbp_dir is None else args.sbp_dir
    gend_dir = os.path.join('../results', args.net, 'gend/iter%d/trial_%e'%(args.n_iter,args.init_lr)) \
            if args.gend_dir is None else args.gend_dir

elif args.net == 'vgg':
    if args.data == 'cifar10':
        input_fn = utils.cifar10.input_fn
        NUM_TRAIN = utils.cifar10.NUM_TRAIN
        NUM_TEST = utils.cifar10.NUM_TEST
        n_classes = 10
    elif args.data == 'cifar100':
        input_fn = utils.cifar100.input_fn
        NUM_TRAIN = utils.cifar100.NUM_TRAIN
        NUM_TEST = utils.cifar100.NUM_TEST
        n_classes = 100
    net = VGG(n_classes)

    base_dir = os.path.join('../results', args.net, args.data, 'base') \
            if args.base_dir is None else args.base_dir
    bbd_dir = os.path.join('../results', args.net, args.data, 'bbd/trial') \
            if args.bbd_dir is None else args.bbd_dir
    dbbd_dir = os.path.join('../results', args.net, args.data, 'dbbd/trial') \
            if args.dbbd_dir is None else args.dbbd_dir
    sbp_dir = os.path.join('../results', args.net, '%s/sbp/iter%d/trial_%e'%(\
               args.data,args.n_iter,args.init_lr)) \
            if args.sbp_dir is None else args.sbp_dir
    gend_dir = os.path.join('../results', args.net, '%s/gend/iter%d/trial_%e'%(\
               args.data,args.n_iter,args.init_lr)) \
            if args.gend_dir is None else args.gend_dir

else: