Example #1
0
def main():
    source_train_loader = mnist.mnist_train_loader
    target_train_loader = mnistm.mnistm_train_loader

    if torch.cuda.is_available():
        get_free_gpu()
        print('Running GPU : {}'.format(torch.cuda.current_device()))
        encoder = model.Extractor().cuda()
        classifier = model.Classifier().cuda()
        discriminator = model.Discriminator().cuda()

        train.source_only(encoder, classifier, source_train_loader,
                          target_train_loader, save_name)
        train.dann(encoder, classifier, discriminator, source_train_loader,
                   target_train_loader, save_name)

    else:
        print("There is no GPU -_-!")
Example #2
0
def main():
    print('Loading word embedding')
    emb = KeyedVectors.load_word2vec_format(hp.word_embedding,
                                            binary=hp.emb_binary)

    print("Loading data")
    stereotype_words = {}
    gender_words = {}
    no_gender_words = make_no_gender_words(open(hp.no_gender_words), emb)
    stereotype_words['female'], stereotype_words['male'] = \
              make_pair_words(hp.stereotype_words, emb)
    gender_words['female'], gender_words['male'] = \
              make_pair_words(hp.gender_words, emb)
    all_words = no_gender_words \
              + stereotype_words['female'] \
              + stereotype_words['male'] \
              + gender_words['female'] \
              + gender_words['male']

    train_words, dev_words = create_train_dev(gender_words, no_gender_words,
                                              stereotype_words)

    word2emb = {}
    for word in all_words:
        word2emb[word] = emb[word]

    if hp.pre_train_autoencoder:
        print('Pre-training autoencoder')
        encoder = model.Encoder(hp.emb_size, hp.hidden_size,
                                hp.pta_dropout_rate)
        decoder = model.Decoder(hp.hidden_size, hp.emb_size,
                                hp.pta_dropout_rate)
        if hp.gpu >= 0:
            encoder.cuda()
            decoder.cuda()
        encoder_optim = make_optim(encoder, hp.pta_optimizer,
                                   hp.pta_learning_rate, hp.pta_lr_decay,
                                   hp.pta_max_grad_norm)
        decoder_optim = make_optim(decoder, hp.pta_optimizer,
                                   hp.pta_learning_rate, hp.pta_lr_decay,
                                   hp.pta_max_grad_norm)
        if hp.pre_data == 'random':
            checkpoint = pre_train_autoencoder(hp, encoder, encoder_optim,
                                               decoder, decoder_optim, emb)
        elif hp.pre_data == 'common':
            checkpoint = pre_train_autoencoder(hp,
                                               encoder,
                                               encoder_optim,
                                               decoder,
                                               decoder_optim,
                                               emb,
                                               dev_words=dev_words)

    encoder = model.Encoder(hp.emb_size, hp.hidden_size, hp.dropout_rate)
    decoder = model.Decoder(hp.hidden_size, hp.emb_size, hp.dropout_rate)
    if hp.gpu >= 0:
        encoder.cuda()
        decoder.cuda()
    if hp.pre_train_autoencoder:
        encoder.load_state_dict(checkpoint['encoder'])
        decoder.load_state_dict(checkpoint['decoder'])

    if hp.pre_train_classifier:
        female_classifier = model.Classifier(hp.hidden_size)
        male_classifier = model.Classifier(hp.hidden_size)
        if hp.gpu >= 0:
            female_classifier.cuda()
            male_classifier.cuda()
        female_classifier_optim = make_optim(female_classifier,
                                             hp.cls_optimizer,
                                             hp.cls_learning_rate,
                                             hp.cls_lr_decay,
                                             hp.cls_max_grad_norm)
        male_classifier_optim = make_optim(male_classifier, hp.cls_optimizer,
                                           hp.cls_learning_rate,
                                           hp.cls_lr_decay,
                                           hp.cls_max_grad_norm)

        encoder.eval()
        encoder.zero_grad()

        train_females = []
        train_males = []
        dev_females = []
        dev_males = []

        train_female_embs = [
            encoder(torch.FloatTensor(emb[word[0]]).cuda()).data
            if hp.gpu >= 0 else encoder(torch.FloatTensor(emb[word[0]])).data
            for word in train_words['female & male']
        ]
        encoder.zero_grad()
        train_male_embs = [
            encoder(torch.FloatTensor(emb[word[1]]).cuda()).data
            if hp.gpu >= 0 else encoder(torch.FloatTensor(emb[word[1]])).data
            for word in train_words['female & male']
        ]
        encoder.zero_grad()
        train_stereotype_embs = [
            encoder(torch.FloatTensor(emb[word]).cuda()).data
            if hp.gpu >= 0 else encoder(torch.FloatTensor(emb[word])).data
            for word in train_words['no gender']
        ]
        encoder.zero_grad()

        dev_female_embs = [
            encoder(torch.FloatTensor(emb[word[0]]).cuda()).data
            if hp.gpu >= 0 else encoder(torch.FloatTensor(emb[word[0]])).data
            for word in dev_words['female & male']
        ]
        encoder.zero_grad()
        dev_male_embs = [
            encoder(torch.FloatTensor(emb[word[1]]).cuda()).data
            if hp.gpu >= 0 else encoder(torch.FloatTensor(emb[word[1]])).data
            for word in dev_words['female & male']
        ]
        encoder.zero_grad()
        dev_stereotype_embs = [
            encoder(torch.FloatTensor(emb[word]).cuda()).data
            if hp.gpu >= 0 else encoder(torch.FloatTensor(emb[word])).data
            for word in dev_words['no gender']
        ]
        encoder.zero_grad()

        print('Pre-training classifier')
        female_checkpoint, male_checkpoint = pre_train_classifier(
            hp, female_classifier, male_classifier, female_classifier_optim,
            male_classifier_optim, train_female_embs, train_male_embs,
            train_stereotype_embs, dev_female_embs, dev_male_embs,
            dev_stereotype_embs)

    print('Building female & male classifiers')
    female_classifier = model.Classifier(hp.hidden_size)
    male_classifier = model.Classifier(hp.hidden_size)
    if hp.gpu >= 0:
        female_classifier.cuda()
        male_classifier.cuda()
    if hp.pre_train_classifier:
        female_classifier.load_state_dict(female_checkpoint['female'])
        male_classifier.load_state_dict(male_checkpoint['male'])

    print('Setting optimizer')
    encoder_optim = make_optim(encoder, hp.optimizer, hp.learning_rate,
                               hp.lr_decay, hp.max_grad_norm)
    female_classifier_optim = make_optim(female_classifier, hp.optimizer,
                                         hp.learning_rate, hp.lr_decay,
                                         hp.max_grad_norm)
    male_classifier_optim = make_optim(male_classifier, hp.optimizer,
                                       hp.learning_rate, hp.lr_decay,
                                       hp.max_grad_norm)
    decoder_optim = make_optim(decoder, hp.optimizer, hp.learning_rate,
                               hp.lr_decay, hp.max_grad_norm)

    trainModel(encoder, encoder_optim, female_classifier,
               female_classifier_optim, male_classifier, male_classifier_optim,
               decoder, decoder_optim, train_words, dev_words, word2emb)
Example #3
0
def cmd_train(context):
    """Main command do train the network.
    :param context: this is a dictionary with all data from the
                    configuration file:
                        - 'command': run the specified command (e.g. train, test)
                        - 'gpu': ID of the used GPU
                        - 'bids_path_train': list of relative paths of the BIDS folders of each training center
                        - 'bids_path_validation': list of relative paths of the BIDS folders of each validation center
                        - 'bids_path_test': list of relative paths of the BIDS folders of each test center
                        - 'batch_size'
                        - 'dropout_rate'
                        - 'batch_norm_momentum'
                        - 'num_epochs'
                        - 'initial_lr': initial learning rate
                        - 'log_directory': folder name where log files are saved
    """
    # Set the GPU
    gpu_number = context["gpu"]
    torch.cuda.set_device(gpu_number)

    # These are the training transformations
    train_transform = transforms.Compose([
        mt_transforms.CenterCrop2D((128, 128)),
        mt_transforms.ElasticTransform(alpha_range=(28.0, 30.0),
                                       sigma_range=(3.5, 4.0),
                                       p=0.3),
        mt_transforms.RandomAffine(degrees=4.6,
                                   scale=(0.98, 1.02),
                                   translate=(0.03, 0.03)),
        mt_transforms.RandomTensorChannelShift((-0.10, 0.10)),
        mt_transforms.ToTensor(),
        mt_transforms.NormalizeInstance(),
    ])

    # These are the validation/testing transformations
    val_transform = transforms.Compose([
        mt_transforms.CenterCrop2D((128, 128)),
        mt_transforms.ToTensor(),
        mt_transforms.NormalizeInstance(),
    ])

    # This code will iterate over the folders and load the data, filtering
    # the slices without labels and then concatenating all the datasets together
    train_datasets = []
    for bids_ds in tqdm(context["bids_path_train"],
                        desc="Loading training set"):
        ds_train = loader.BidsDataset(bids_ds,
                                      transform=train_transform,
                                      slice_filter_fn=loader.SliceFilter())
        train_datasets.append(ds_train)

    ds_train = ConcatDataset(train_datasets)
    print(f"Loaded {len(ds_train)} axial slices for the training set.")
    train_loader = DataLoader(ds_train,
                              batch_size=context["batch_size"],
                              shuffle=True,
                              pin_memory=True,
                              collate_fn=mt_datasets.mt_collate,
                              num_workers=1)

    # Validation dataset ------------------------------------------------------
    validation_datasets = []
    for bids_ds in tqdm(context["bids_path_validation"],
                        desc="Loading validation set"):
        ds_val = loader.BidsDataset(bids_ds,
                                    transform=val_transform,
                                    slice_filter_fn=loader.SliceFilter())
        validation_datasets.append(ds_val)

    ds_val = ConcatDataset(validation_datasets)
    print(f"Loaded {len(ds_val)} axial slices for the validation set.")
    val_loader = DataLoader(ds_val,
                            batch_size=context["batch_size"],
                            shuffle=True,
                            pin_memory=True,
                            collate_fn=mt_datasets.mt_collate,
                            num_workers=1)

    model = M.Classifier(drop_rate=context["dropout_rate"],
                         bn_momentum=context["batch_norm_momentum"])
    model.cuda()

    num_epochs = context["num_epochs"]
    initial_lr = context["initial_lr"]

    # Using SGD with cosine annealing learning rate
    optimizer = optim.SGD(model.parameters(), lr=initial_lr)
    scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, num_epochs)

    # Write the metrics, images, etc to TensorBoard format
    writer = SummaryWriter(log_dir=context["log_directory"])

    # Cross Entropy Loss
    criterion = nn.CrossEntropyLoss()

    # Training loop -----------------------------------------------------------
    best_validation_loss = float("inf")

    lst_train_loss = []
    lst_val_loss = []
    lst_accuracy = []

    for epoch in tqdm(range(1, num_epochs + 1), desc="Training"):
        start_time = time.time()

        scheduler.step()

        lr = scheduler.get_lr()[0]
        writer.add_scalar('learning_rate', lr, epoch)

        model.train()
        train_loss_total = 0.0
        num_steps = 0

        for i, batch in enumerate(train_loader):
            input_samples = batch["input"]
            input_labels = get_modality(batch)

            var_input = input_samples.cuda()
            var_labels = torch.cuda.LongTensor(input_labels).cuda(
                non_blocking=True)

            outputs = model(var_input)

            loss = criterion(outputs, var_labels)
            train_loss_total += loss.item()

            optimizer.zero_grad()
            loss.backward()

            optimizer.step()
            num_steps += 1

        train_loss_total_avg = train_loss_total / num_steps
        lst_train_loss.append(train_loss_total_avg)

        tqdm.write(f"Epoch {epoch} training loss: {train_loss_total_avg:.4f}.")

        # Validation loop -----------------------------------------------------
        model.eval()
        val_loss_total = 0.0
        num_steps = 0

        val_accuracy = 0
        num_samples = 0

        for i, batch in enumerate(val_loader):
            input_samples = batch["input"]
            input_labels = get_modality(batch)

            with torch.no_grad():
                var_input = input_samples.cuda()
                var_labels = torch.cuda.LongTensor(input_labels).cuda(
                    non_blocking=True)

                outputs = model(var_input)
                _, preds = torch.max(outputs, 1)

                loss = criterion(outputs, var_labels)
                val_loss_total += loss.item()

                val_accuracy += int((var_labels == preds).sum())

            num_steps += 1
            num_samples += context['batch_size']

        val_loss_total_avg = val_loss_total / num_steps
        lst_val_loss.append(val_loss_total_avg)
        tqdm.write(f"Epoch {epoch} validation loss: {val_loss_total_avg:.4f}.")

        val_accuracy_avg = 100 * val_accuracy / num_samples
        lst_accuracy.append(val_accuracy_avg)
        tqdm.write(f"Epoch {epoch} accuracy : {val_accuracy_avg:.4f}.")

        # add metrics for tensorboard
        writer.add_scalars('validation metrics', {
            'accuracy': val_accuracy_avg,
        }, epoch)

        writer.add_scalars('losses', {
            'train_loss': train_loss_total_avg,
            'val_loss': val_loss_total_avg,
        }, epoch)

        end_time = time.time()
        total_time = end_time - start_time
        tqdm.write("Epoch {} took {:.2f} seconds.".format(epoch, total_time))

        if val_loss_total_avg < best_validation_loss:
            best_validation_loss = val_loss_total_avg
            torch.save(model,
                       "./" + context["log_directory"] + "/best_model.pt")

    # save final model
    torch.save(model, "./" + context["log_directory"] + "/final_model.pt")

    # save the metrics
    parameters = "CrossEntropyLoss/batchsize=" + str(context['batch_size'])
    parameters += "/initial_lr=" + str(context['initial_lr'])
    parameters += "/dropout=" + str(context['dropout_rate'])

    plt.subplot(2, 1, 1)
    plt.title(parameters)
    plt.plot(lst_train_loss, color='red', label='Training')
    plt.plot(lst_val_loss, color='blue', label='Validation')
    plt.legend(loc='upper right')
    plt.ylabel('Loss')

    plt.subplot(2, 1, 2)
    plt.plot(lst_accuracy)
    plt.ylabel('Accuracy')
    plt.xlabel('Epoch')

    plt.savefig(parameters + '.png')

    return
Example #4
0
            plot_loss_total = 0

    return plot_losses


if __name__ == '__main__':

    #device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    device = torch.device("cpu")
    print('Loading data')
    print(device)
    print('Ignoring:', sys.argv[2:])
    entries = data.load(sys.argv[1], exclude=sys.argv[2:])

    n_iters = 30000
    dataset = data.balanced(entries, n_iters)
    #dataset=entries

    print('Training')

    embedded_size = 64
    hidden_size = 128
    encoder1 = model.Encoder(hidden_size, 3).to(device)
    classifier1 = model.Classifier(hidden_size, 2).to(device)

    train(dataset, encoder1, classifier1, device=device, print_every=2000)

    print('Caching trained model')
    torch.save(encoder1, 'encoder.pt')
    torch.save(classifier1, 'classifier.pt')
Example #5
0
# main.py
# The main program; primary interface to the classification model

import data
import model

(train_data, train_labels, test_data, test_labels) = data.import_data()
classifier = model.Classifier()
classifier.train(train_data, train_labels)
classifier.evaluate(test_data, test_labels)
classifier.cv(test_data, test_labels)
    print('===> prepare dataloader ...')
    train_loader = torch.utils.data.DataLoader(data.TrimmedVideoData(
        args, mode='train', model_type='cnn'),
                                               batch_size=args.train_batch,
                                               num_workers=args.workers,
                                               shuffle=True)
    #    collate_fn=data.collate_fn)

    val_loader = torch.utils.data.DataLoader(data.TrimmedVideoData(
        args, mode='val', model_type='cnn'),
                                             batch_size=args.train_batch,
                                             num_workers=args.workers,
                                             shuffle=True)
    ''' load model '''
    print('===> prepare model ...')
    feature_extractor, classifier = model.Resnet50(), model.Classifier()

    feature_extractor.cuda()
    classifier.cuda()

    clf_criterion = nn.CrossEntropyLoss()
    clf_optimizer = torch.optim.Adam(classifier.parameters(),
                                     lr=args.lr,
                                     betas=(args.beta1, args.beta2))
    ''' setup tensorboard '''
    writer = SummaryWriter(os.path.join(args.save_dir, 'train_info'))

    print('===> start training ...')
    iters = 0
    best_acc = 0
Example #7
0
def predict(input):
    config = {'hidden_size': 512}  # same config
    model = m.Classifier(cnn.ConvolutionalModel,
                         cnn.Config(name_suffix='THE_BEAST', **config))
    pred = model.predict(input)
    return pred
Example #8
0
'''
TODO:  decoder mlp增加,encoder可以先用训练好的参数
'''

EPOCH = 11
BATCH_SIZE = 200
LATENT_CODE_g = 30  #40 general
LATENT_CODE_d = 20
log_interval = 10
last_checkpoint = 0

droupout_rate = 0
vae_encoder = model.VAE_encoder(droupout_rate, LATENT_CODE_g,
                                LATENT_CODE_d).cuda()
vae_decoder = model.VAE_decoder(LATENT_CODE_g, LATENT_CODE_d).cuda()
classifier = model.Classifier(LATENT_CODE_d).cuda()
'''训练'''
'''读取原来的训练文件'''

if last_checkpoint != 0:
    vae_encoder.load_state_dict(
        torch.load('save\\vae_encoder' + str(last_checkpoint) + '.pkl'))
    vae_decoder.load_state_dict(
        torch.load('save\\vae_decoder' + str(last_checkpoint) + '.pkl'))
    classifier.load_state_dict(
        torch.load('save\\classifier' + str(last_checkpoint) + '.pkl'))
    z_prior_mu = np.load('save\\z_prior_mu' + str(last_checkpoint) + '.npy')
    z_prior_logvar = np.load('save\\z_prior_logvar' + str(last_checkpoint) +
                             '.npy')
    kkt_param = np.load('save\\kkt_param' + str(last_checkpoint) + '.npy')
    vae_encoder.prior_mu = Variable(torch.tensor(z_prior_mu).type(
Example #9
0
    test_loader = DataLoader(test_data,
                             batch_size=config.batch,
                             shuffle=False,
                             num_workers=config.cpu_processor,
                             drop_last=True)

    dev_loader = DataLoader(dev_data,
                            batch_size=config.batch,
                            shuffle=False,
                            num_workers=config.cpu_processor,
                            drop_last=True)

    # 모델 설정
    device = torch.device(config.gpu if torch.cuda.is_available() else 'cpu')
    model = model.Classifier(dataset.vocab_list)
    model.to(device)

    optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)
    loss_function = nn.CrossEntropyLoss()
    print("--model set--")

    # 훈련
    step_list = []
    loss_list = []
    acc_test_list = []
    acc_dev_list = []
    step = 0
    for i in range(config.epoch):
        print("epoch = ", i)
        for n, (label, sent1, sent2) in enumerate(train_loader):