def export_graph():
    graph = tf.Graph()

    with graph.as_default():
        # Instantiate a CycleGAN
        cycle_gan = model.CycleGAN(ngf=64,
                                   norm="instance",
                                   image_size=FLAGS.image_size)

        # Create placeholder for image bitstring
        # This is the first injection layer
        input_bytes = tf.placeholder(tf.string, shape=[], name="input_bytes")

        # Preprocess input (bitstring to float tensor)
        input_tensor = preprocess_bitstring_to_float_tensor(
            input_bytes, FLAGS.image_size)

        # Get style transferred tensor
        output_tensor = cycle_gan.G.sample(input_tensor)

        # Postprocess output
        output_bytes = postprocess_float_tensor_to_bitstring(output_tensor)

        # Instantiate a Saver
        saver = tf.train.Saver()

    with tf.Session(graph=graph) as sess:
        sess.run(tf.global_variables_initializer())

        # Access variables and weights from last checkpoint
        latest_ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
        saver.restore(sess, latest_ckpt)

        # Export graph to ProtoBuf
        output_graph_def = tf.graph_util.convert_variables_to_constants(
            sess, graph.as_graph_def(), [output_bytes.op.name])

        tf.train.write_graph(output_graph_def,
                             FLAGS.protobuf_dir,
                             FLAGS.model_name + "_v" + str(FLAGS.version),
                             as_text=False)
Example #2
0
def example_usage(_):
    sys.path.insert(0, "../CycleGAN-TensorFlow")
    import model  # nopep8

    # Instantiates a CycleGAN
    cycle_gan = model.CycleGAN(ngf=64,
                               norm="instance",
                               image_size=FLAGS.image_size)

    # Instantiates a ServerBuilder
    server_builder = ServerBuilder()

    # Exports model
    print("Exporting model to ProtoBuf...")
    server_builder.export_graph(cycle_gan.G.sample, FLAGS.model_name,
                                FLAGS.model_version, FLAGS.checkpoint_dir,
                                FLAGS.protobuf_dir, FLAGS.image_size)
    print("Wrapping ProtoBuf in SavedModel...")
    server_builder.build_saved_model(FLAGS.model_name, FLAGS.model_version,
                                     FLAGS.protobuf_dir, FLAGS.serve_dir)
    print("Exported successfully!")
    print("""Run the server with:
          tensorflow_model_server --rest_api_port=8501 """
          "--model_name=saved_model --model_base_path=$(path)")
Example #3
0
#     plt.figure(figsize=(5,5))#图片大一点才可以承载像素
#     plt.subplot(2,2,1)
#     plt.imshow(X[0,:,:,8],cmap='gray')
#     plt.axis('off')
#     plt.subplot(2,2,2)
#     plt.imshow(Y[0,:,:,8],cmap='gray')
#     plt.axis('off')
#     plt.subplot(2,2,3)
#     plt.imshow(mX[0,:,:,8],cmap='gray')
#     plt.axis('off')
#     plt.subplot(2,2,4)
#     plt.imshow(mY[0,:,:,8],cmap='gray')
#     plt.show()

test_set = train_dataset.DataPipeLine(test_path,target_size=[240,240,155],patch_size=[128,128,16],crop="crop_centro")
test_set = tf.data.Dataset.from_generator(test_set.generator,output_types=(tf.float32,tf.float32,tf.float32,tf.float32,tf.int32),output_shapes=([240,240,155],[240,240,155],[240,240,155],[240,240,155],[3,2]))\
            .map(map_func,num_parallel_calls=num_threads)\
            .batch(BATCH_SIZE)\
            .prefetch(buffer_size = tf.data.experimental.AUTOTUNE)

# for i,(X,Y) in enumerate(dataset):
#     print(i+1,X.shape,Y.dtype)
model = model.CycleGAN(train_set=dataset,
                       test_set=test_set,
                       loss_name="WGAN-GP-SN",
                       mixed_precision=True,
                       learning_rate=1e-4,
                       tmp_path=tmp_path,
                       out_path=out_path)
model.build(X_shape=[None,128,128,16,1],Y_shape=[None,128,128,16,1])
model.train(epoches=EPOCHES)