Example #1
0
def init_model(model_type):
    model = []
    if model_type == 'LeNet5':
        model = fedmodel.LeNet5()
    elif model_type == 'MLP':
        model = fedmodel.MLP()
    elif model_type == 'ResNet18':
        model = fedmodel.ResNet18()
    elif model_type == 'CNN':
        model = fedmodel.CNN()
    return model
Example #2
0
def main():
    args = parse_args()
    train_dataset, test_dataset = dataset.get_dataset(args.path,
                                                      args.use_augmentation,
                                                      args.use_fivecrop)
    train_loader = DataLoader(train_dataset,
                              args.batch,
                              True,
                              num_workers=args.worker,
                              pin_memory=True)
    test_loader = DataLoader(test_dataset,
                             args.batch,
                             False,
                             num_workers=args.worker,
                             pin_memory=True)
    if args.cuda:
        torch.cuda.set_device(0)
        device = torch.device('cuda')
    else:
        device = torch.device('cpu')
    if args.model == 'ResNet18':
        mymodel = model.ResNet18(args.frozen_layers).to(device)
    elif args.model == 'ResNet34':
        mymodel = model.ResNet34(args.frozen_layers).to(device)
    elif args.model == 'ResNet50':
        mymodel = model.ResNet50(args.frozen_layers).to(device)
    elif args.model == 'DenseNet':
        mymodel = model.DenseNet().to(device)
    else:
        pass
    op = optim.Adam(mymodel.parameters(), lr=args.lr)
    train_losses, test_mF1s, test_precisions, test_recalls = [], [], [], []
    early = args.early
    for i in range(args.epoch):
        train_loss = train.train(mymodel, op, train_loader, i, device,
                                 args.log, utils.pos_weight)
        mF1, recall, presicion = test.test(mymodel, test_loader, device,
                                           args.use_fivecrop)
        train_losses.append(train_loss)
        test_mF1s.append(mF1)
        test_precisions.append(presicion)
        test_recalls.append(recall)
        early = utils.early_stop(test_mF1s, early)
        if early <= 0:
            break
    utils.save_log(mymodel, train_losses, test_mF1s, test_precisions,
                   test_recalls)
Example #3
0
def main():
    args = parse_args()
    save = True
    use_gpu = args.cuda == 'True'
    load = args.load == 'True'
    train_tfs = transforms.Compose([
        transforms.Resize(299),
        transforms.RandomSizedCrop(299),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
    ds = my_dataset("train", train_tfs)
    dataset_size = ds.__len__()
    print(dataset_size)
    train_ds, val_ds = torch.utils.data.random_split(ds, [13000, 1463])
    train_loader = torch.utils.data.DataLoader(train_ds,
                                               args.BS,
                                               False,
                                               num_workers=8)
    val_loader = torch.utils.data.DataLoader(val_ds,
                                             args.BS,
                                             False,
                                             num_workers=8)
    print('train: ', len(train_ds))
    print('validation:', len(val_ds))
    print(type(ds), type(train_ds))
    if args.model == 'ResNet18':
        test_model = model.ResNet18()
    if args.model == 'ResNet50':
        test_model = model.ResNet50()
    if args.model == 'Inception':
        test_model = model.Inception()
    if args.model == 'DenseNet':
        test_model = model.DenseNet()
    if use_gpu:
        test_model = test_model.cuda()
    if load:
        test_model.load_state_dict(torch.load('params' + args.model + '.pkl'))
    optimizer = optim.Adam(test_model.parameters(), lr=args.lr)
    print(use_gpu)
    result = train(test_model, args.epoch, optimizer, train_loader, val_loader,
                   args.model, save, use_gpu)
    test(result, val_loader, use_gpu)
Example #4
0
        DATASET = dataset.Testset(args.data_path)
        DATALOADER = Data.DataLoader(DATASET,
                                     batch_size=args.batch_size,
                                     shuffle=True,
                                     num_workers=20)
        NUM_CLASSES = DATASET.num_classes
        print('Data path: ' + args.data_path)
        print('Number of classes: %d' % NUM_CLASSES)
        print('Batch size: %d' % args.batch_size)
        print('Epoch size: %d' % args.epoch_size)

        num_batches = len(DATALOADER)
        batch_total = num_batches * args.epoch_size

        if args.model == 'ResNet18':
            MODEL = model.ResNet18(pseudo=args.pseudo)
        elif args.model == 'ResNet34':
            MODEL = model.ResNet34(pseudo=args.pseudo)
        elif args.model == 'ResNet50':
            MODEL = model.ResNet50(pseudo=args.pseudo)
        elif args.model == 'ResNet101':
            MODEL = model.ResNet101(pseudo=args.pseudo)

        ARCFACE = lossfunction.Arcface(512, NUM_CLASSES)

        if args.optim == 'Adam':
            OPTIMIZER = torch.optim.Adam([{
                'params': MODEL.parameters()
            }, {
                'params': ARCFACE.parameters()
            }],
Example #5
0
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import ReduceLROnPlateau
from pre_process import transform_train, transform_test

# whether use gpu
use_cuda = torch.cuda.is_available()

# default parameters
DATA_ROOT = '../data/'
num_epochs = 50
batch_size = 128

model_names = {
    'dnn': model.DNN(3072, 4096, 10),
    'cnn': model.CNN(),
    'resnet18': model.ResNet18(),
    'resnet34': model.ResNet34(),
    'resnet50': model.ResNet50()
}


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_type',
                        type=str,
                        default='dnn',
                        help="the type of model")
    parser.add_argument('--lr',
                        type=float,
                        default=0.1,
                        help='the initial learning rate')
Example #6
0
import torchvision.transforms as transforms
import torch.optim as optim
from torchsummary import summary
# Importing Modules
import data as d
import show_images as s
import model as m
import train_test as t

classes, trainloader, testloader = d.load()
s.show_random_images(trainloader, classes)

use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
print(device)
model = m.ResNet18().to(device)
summary(model, input_size=(3, 32, 32))

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(),
                      lr=0.1,
                      momentum=0.9,
                      weight_decay=0.0005)
testLoss = []
testAcc = []
EPOCHS = 1
for epoch in range(EPOCHS):
    print("EPOCH:", epoch)
    print("Device:", device)
    t.train(model, device, trainloader, optimizer, criterion, epoch)
    test_loss, test_acc = t.test(model, device, criterion, testloader)
Example #7
0
                                        transforms.ToTensor(),
                                        transforms.Normalize((0.4914, 0.4822, 0.4465),
                                                            (0.2023, 0.1994, 0.2010))
                                        ])
    transforms_test = transforms.Compose([
                                        transforms.ToTensor(),
                                        transforms.Normalize((0.4914, 0.4822, 0.4465),
                                                            (0.2023, 0.1994, 0.2010))
                                        ]) 
    trainset = datasets.CIFAR10('../../data', train=True, download=is_download, transform=transforms_train)
    testset = datasets.CIFAR10('../../data', train=False, download=is_download, transform=transforms_test)
    trainloader = data.DataLoader(trainset, batch_size=size_train, shuffle=True, num_workers=8)
    testloader = data.DataLoader(testset, batch_size=size_test, shuffle=False, num_workers=8)

    # model
    predictor = model.ResNet18()
    # net
    net = experiment.E_basic(predictor)
    if use_cuda:
        net.cuda()
    updater = optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9, weight_decay=decay)
    trainer = Trainer(use_cuda, trainloader, max_epoch, net, updater)                                          

    print('trainer completed')

    trainer.headtrain(extensions.basic_load, args.resume_epoch, 'accuracy')

    trainer.headepoch(extensions.drop_lr, lr_trigger, lrs)

    # set tailepoch extensions, the work to do at the end of each epoch
Example #8
0
def main_worker(gpu, ngpus_per_node, time_str, args):
    global best_acc1
    args.gpu = gpu
    prune_rate = float(args.prune_rate)

    if args.gpu is not None:
        print("Use GPU: {} for training".format(args.gpu))
        torch.cuda.empty_cache()
    if args.distributed:
        if args.dist_url == "env://" and args.rank == -1:
            args.rank = int(os.environ["RANK"])
        if args.multiprocessing_distributed:
            # For multiprocessing distributed training, rank needs to be the
            # global rank among all the processes
            args.rank = args.rank * ngpus_per_node + gpu
        os.environ['NCCL_DEBUG'] = 'INFO'
        os.environ['NCCL_SOCKET_IFNAME'] = 'eno1'
        os.environ['NCCL_IB_DISABLE'] = '1'
        os.environ["MASTER_ADDR"] = "127.0.0.1"
        os.environ["MASTER_PORT"] = "29595"
        dist.init_process_group(backend=args.dist_backend,
                                init_method=args.dist_url,
                                world_size=args.world_size,
                                rank=args.rank)
    # create models
    if args.pretrained:
        print("=> using pre-trained models '{}'".format(args.arch))
        model = models.__dict__[args.arch](pretrained=True)
    elif args.arch == 'ResNet18':
        model = self_model.ResNet18(
            conv_act='relu',
            train_mode_conv='Sign_symmetry_magnitude_uniform',
            train_mode_fc='Sign_symmetry_magnitude_uniform',
            prune_flag='StochasticFA',
            prune_percent=prune_rate,
            angle_measurement=False)
    elif args.arch == 'AlexNet':
        model = self_model.AlexNet_SFA(
            train_mode_conv='Sign_symmetry_magnitude_uniform',
            train_mode_fc='Sign_symmetry_magnitude_uniform',
            prune_rate=prune_rate,
            angle_measurement=False)
    else:
        print("=> creating models '{}'".format(args.arch))
        model = models.__dict__[args.arch]()

    if not torch.cuda.is_available():
        print('using CPU, this will be slow')
    elif args.distributed:
        # For multiprocessing distributed, DistributedDataParallel constructor
        # should always set the single device scope, otherwise,
        # DistributedDataParallel will use all available devices.
        if args.gpu is not None:
            torch.cuda.set_device(args.gpu)
            model.cuda(args.gpu)
            # When using a single GPU per process and per
            # DistributedDataParallel, we need to divide the batch size
            # ourselves based on the total number of GPUs we have
            args.batch_size = int(args.batch_size / ngpus_per_node)
            args.workers = int(
                (args.workers + ngpus_per_node - 1) / ngpus_per_node)
            model = torch.nn.parallel.DistributedDataParallel(
                model, device_ids=[args.gpu])
        else:
            model.cuda()
            # DistributedDataParallel will divide and allocate batch_size to all
            # available GPUs if device_ids are not set
            model = torch.nn.parallel.DistributedDataParallel(model)
    elif args.gpu is not None:
        torch.cuda.set_device(args.gpu)
        model = model.cuda(args.gpu)
    else:
        # DataParallel will divide and allocate batch_size to all available GPUs
        if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
            model.features = torch.nn.DataParallel(model.features)
            model.cuda()
        else:
            model = torch.nn.DataParallel(model).cuda()

    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda(args.gpu)

    optimizer = torch.optim.SGD(model.parameters(),
                                args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            if args.gpu is None:
                checkpoint = torch.load(args.resume)
            else:
                # Map models to be loaded to specified single gpu.
                loc = 'cuda:{}'.format(args.gpu)
                checkpoint = torch.load(args.resume, map_location=loc)
            args.start_epoch = checkpoint['epoch']
            best_acc1 = checkpoint['best_acc1']
            if args.gpu is not None:
                # best_acc1 may be from a checkpoint from a different GPU
                best_acc1 = best_acc1.to(args.gpu)
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

    cudnn.benchmark = True

    # Data loading code
    traindir = os.path.join(args.data, 'train')
    valdir = os.path.join(args.data, 'val')
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    train_dataset = datasets.ImageFolder(
        traindir,
        transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            normalize,
        ]))

    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(
            train_dataset)
    else:
        train_sampler = None

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=(train_sampler is None),
                                               num_workers=args.workers,
                                               pin_memory=True,
                                               sampler=train_sampler)

    val_loader = torch.utils.data.DataLoader(datasets.ImageFolder(
        valdir,
        transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            normalize,
        ])),
                                             batch_size=args.batch_size,
                                             shuffle=False,
                                             num_workers=args.workers,
                                             pin_memory=True)

    if args.evaluate:
        validate(val_loader, model, criterion, args)
        return

    if args.cos_annl_lr_scheduler:
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer,
                                                               T_max=200)

    with torch.cuda.device(0):
        macs, params = get_model_complexity_info(model, (3, 227, 227),
                                                 as_strings=True,
                                                 print_per_layer_stat=True,
                                                 verbose=True)
        logging.info('{:<30}  {:<8}'.format('Computational complexity: ',
                                            macs))
        logging.info('{:<30}  {:<8}'.format('Number of parameters: ', params))
    # summary(models, input_size=(3, 227, 227), device='cpu')

    logging.info('Model:')
    logging.info(model)

    layers_zero_grad_df = pd.DataFrame()
    zero_grads_percentage_list = []
    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)
        adjust_learning_rate(optimizer, epoch, args)

        localtime = time.localtime(time.time())
        print('fred: Now is {}d-{}h-{}m-{}s'.format(localtime.tm_mday,
                                                    localtime.tm_hour,
                                                    localtime.tm_min,
                                                    localtime.tm_sec))
        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch,
              layers_zero_grad_df, zero_grads_percentage_list, time_str, args)

        # step the scheduler
        if args.cos_annl_lr_scheduler:
            scheduler.step()

        # evaluate on validation set
        acc1 = validate(val_loader, model, criterion, args)

        # remember best acc@1 and save checkpoint
        is_best = acc1 > best_acc1
        best_acc1 = max(acc1, best_acc1)

        if not args.multiprocessing_distributed or (
                args.multiprocessing_distributed
                and args.rank % ngpus_per_node == 0):
            save_checkpoint(
                {
                    'epoch': epoch + 1,
                    'arch': args.arch,
                    'state_dict': model.state_dict(),
                    'best_acc1':
                    best_acc1,  # the epoch might not be best epoch, with the best_acc1 stored, the model_best
                    # pth.tar won't be updated unless it is the real best in this trial
                    'optimizer': optimizer.state_dict(),
                },
                is_best,
                arch=args.arch,
                foldername=args.folder_name)
Example #9
0
parser.add_argument(
    '--outf',
    default='./checkpoint',
    help='folder to output images and model checkpoints')  #输出结果保存路径
args = parser.parse_args()

# 定义是否使用GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 超参数设置
EPOCH = 2  # 遍历数据集次数
pre_epoch = 0  # 定义已经遍历数据集的次数
LR = 0.1  # 学习率

# 模型定义-ResNet
net = model.ResNet18().to(device)

# 定义损失函数和优化方式
criterion = nn.CrossEntropyLoss()  # 损失函数为交叉熵,多用于多分类问题
optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9, weight_decay=5e-4)
# 优化方式为mini-batch momentum-SGD,并采用L2正则化(权重衰减)

# 训练
if __name__ == "__main__":
    print("Start Training, Resnet-18!")
    num_iters = 0
    for epoch in range(pre_epoch, EPOCH):
        print('\nEpoch: %d' % (epoch + 1))
        net.train()
        sum_loss = 0.0
        correct = 0.0