Example #1
0
elif args.model == 'resnet_2d':
    model = model_.ResNet_2d(n_z=args.latent_size,
                             proj_size=train_dataset.n_speakers,
                             ncoef=args.ncoef,
                             sm_type=args.softmax,
                             delta=args.delta)
elif args.model == 'TDNN':
    model = model_.TDNN(n_z=args.latent_size,
                        proj_size=train_dataset.n_speakers,
                        ncoef=args.ncoef,
                        sm_type=args.softmax,
                        delta=args.delta)
elif args.model == 'TDNN_logpool':
    model = model_.TDNN_logpool(n_z=args.latent_size,
                                proj_size=train_dataset.n_speakers,
                                ncoef=args.ncoef,
                                sm_type=args.softmax,
                                delta=args.delta)
elif args.model == 'TDNN_att':
    model = model_.TDNN_att(n_z=args.latent_size,
                            proj_size=train_dataset.n_speakers,
                            ncoef=args.ncoef,
                            sm_type=args.softmax,
                            delta=args.delta)
elif args.model == 'TDNN_multihead':
    model = model_.TDNN_multihead(n_z=args.latent_size,
                                  proj_size=train_dataset.n_speakers,
                                  ncoef=args.ncoef,
                                  sm_type=args.softmax,
                                  delta=args.delta)
elif args.model == 'TDNN_lstm':
Example #2
0
		elif args.model == 'resnet_lstm':
			model = model_.ResNet_lstm(n_z=args.latent_size, proj_size=0, ncoef=args.ncoef, delta = args.delta)
		elif args.model == 'resnet_qrnn':
			model = model_.ResNet_qrnn(n_z=args.latent_size, proj_size=0, ncoef=args.ncoef, delta = args.delta)
		elif args.model == 'resnet_stats':
			model = model_.ResNet_stats(n_z=args.latent_size, proj_size=0, ncoef=args.ncoef, delta = args.delta)
		elif args.model == 'resnet_large':
			model = model_.ResNet_large(n_z=args.latent_size, proj_size=0, ncoef=args.ncoef, delta = args.delta)
		elif args.model == 'resnet_small':
			model = model_.ResNet_small(n_z=args.latent_size, proj_size=0, ncoef=args.ncoef, delta = args.delta)
		elif args.model == 'resnet_2d':
			model = model_.ResNet_2d(n_z=args.latent_size, proj_size=0, ncoef=args.ncoef, delta = args.delta)
		elif args.model == 'TDNN':
			model = model_.TDNN(n_z=args.latent_size, proj_size=0, ncoef=args.ncoef, delta = args.delta)
		elif args.model == 'TDNN_logpool':
			model = model_.TDNN_logpool(n_z=args.latent_size, proj_size=0, ncoef=args.ncoef, delta = args.delta)
		elif args.model == 'TDNN_att':
			model = model_.TDNN_att(n_z=args.latent_size, proj_size=0, ncoef=args.ncoef, delta = args.delta)
		elif args.model == 'TDNN_multihead':
			model = model_.TDNN_multihead(n_z=args.latent_size, proj_size=0, ncoef=args.ncoef, delta = args.delta)
		elif args.model == 'TDNN_lstm':
			model = model_.TDNN_lstm(n_z=args.latent_size, proj_size=0, ncoef=args.ncoef, delta = args.delta)
		elif args.model == 'TDNN_aspp':
			model = model_.TDNN_aspp(n_z=args.latent_size, proj_size=0, ncoef=args.ncoef, delta = args.delta)
		elif args.model == 'TDNN_mod':
			model = model_.TDNN_mod(n_z=args.latent_size, proj_size=0, ncoef=args.ncoef, delta = args.delta)
		elif args.model == 'transformer':
			model = model_.transformer_enc(n_z=args.latent_size, proj_size=0, ncoef=args.ncoef, delta = args.delta)

		ckpt = torch.load(args.cp_path, map_location = lambda storage, loc: storage)
Example #3
0
    print('resnet_2d', mu.size(), emb.size(), out.size())
if args.model == 'TDNN' or args.model == 'all':
    batch = torch.rand(3, 3 if args.delta else 1, args.ncoef, 200)
    model = model_.TDNN(n_z=args.latent_size,
                        ncoef=args.ncoef,
                        delta=args.delta,
                        proj_size=10,
                        sm_type='softmax')
    mu, emb = model.forward(batch)
    out = model.out_proj(mu, torch.ones(mu.size(0)))
    print('TDNN', mu.size(), emb.size(), out.size())
if args.model == 'TDNN_logpool' or args.model == 'all':
    batch = torch.rand(3, 3 if args.delta else 1, args.ncoef, 200)
    model = model_.TDNN_logpool(n_z=args.latent_size,
                                ncoef=args.ncoef,
                                delta=args.delta,
                                proj_size=10,
                                sm_type='softmax')
    mu, emb = model.forward(batch)
    out = model.out_proj(mu, torch.ones(mu.size(0)))
    print('TDNN_logpool', mu.size(), emb.size(), out.size())
if args.model == 'TDNN_att' or args.model == 'all':
    batch = torch.rand(3, 3 if args.delta else 1, args.ncoef, 200)
    model = model_.TDNN_att(n_z=args.latent_size,
                            ncoef=args.ncoef,
                            delta=args.delta,
                            proj_size=10,
                            sm_type='softmax')
    mu, emb = model.forward(batch)
    out = model.out_proj(mu, torch.ones(mu.size(0)))
    print('TDNN_att', mu.size(), emb.size(), out.size())