Example #1
0
def main(_):
    if not os.path.exists(args.ckpt_dir):
        os.makedirs(args.ckpt_dir)
    if not os.path.exists(args.sample_dir):
        os.makedirs(args.sample_dir)
    if not os.path.exists(args.test_dir):
        os.makedirs(args.test_dir)

    lr = args.lr * np.ones([args.epoch])
    lr[30:] = lr[0] / 10.0
    if args.use_gpu:
        # added to control the gpu memory
        print("GPU\n")
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.9)
        with tf.Session(config=tf.ConfigProto(
                gpu_options=gpu_options)) as sess:
            model = denoiser(sess, sigma=args.sigma)
            if args.phase == 'train':
                denoiser_train(model, lr=lr)
            elif args.phase == 'test':
                denoiser_test(model)
            else:
                print('[!]Unknown phase')
                exit(0)
    else:
        print("CPU\n")
        with tf.Session() as sess:
            model = denoiser(sess, sigma=args.sigma)
            if args.phase == 'train':
                denoiser_train(model, lr=lr)
            elif args.phase == 'test':
                denoiser_test(model)
            else:
                print('[!]Unknown phase')
                exit(0)
Example #2
0
def main(_):

    #the following string is attached to checkpoint, log and image folder names
    eps_str = str(int(np.log10(args.eps)))
    name = "DnCNN_" + args.cost + str(args.type) + "_sigma" + str(
        int(args.sigma))

    ckpt_dir = args.ckpt_dir + "/" + name
    sample_dir = args.sample_dir + "/" + name
    test_dir = args.test_dir + "/" + name
    log_dir = args.log_dir + "/" + name

    if not os.path.exists(args.ckpt_dir):
        os.makedirs(args.ckpt_dir)

    lr = args.lr * np.ones([args.epoch])
    lr[40:] = lr[0] / 10.0  #lr decay

    if args.use_gpu:
        # added to control the gpu memory
        print("GPU\n")
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.9)
        with tf.Session(config=tf.ConfigProto(
                gpu_options=gpu_options)) as sess:
            model = denoiser(sess,
                             sigma=args.sigma,
                             eps=args.eps,
                             cost_str=args.cost,
                             ckpt_dir=ckpt_dir,
                             sample_dir=sample_dir,
                             log_dir=log_dir)
            if args.phase == 'train':
                denoiser_train(model, lr=lr)
            elif args.phase == 'test':
                denoiser_test(model, test_dir)
            else:
                print('[!]Unknown phase')
                exit(0)
    else:
        print("CPU\n")
        with tf.Session() as sess:
            model = denoiser(sess,
                             sigma=args.sigma,
                             eps=args.eps,
                             cost_str=args.cost,
                             ckpt_dir=ckpt_dir,
                             sample_dir=sample_dir,
                             log_dir=log_dir)
            if args.phase == 'train':
                denoiser_train(model, lr=lr)
            elif args.phase == 'test':
                denoiser_test(model, test_dir)
            else:
                print('[!]Unknown phase')
                exit(0)
Example #3
0
def main(_):
    # checkpoint dir
    if not os.path.exists(args.ckpt_dir):
        os.makedirs(args.ckpt_dir)

    lr = args.lr * np.ones([args.epoch])

    # reduce learning rate after 60% total epoch
    small_lr_pos = int(args.epoch * 0.6)
    lr[small_lr_pos:] = lr[0] * 0.1

    if args.use_gpu:
        # added to control the gpu memory
        print("Run Tensorflow [GPU]\n")
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.95)
        with tf.Session(config=tf.ConfigProto(
                gpu_options=gpu_options)) as sess:
            model = denoiser(sess)  # init a denoiser class
            if args.phase == 'train':
                denoiser_train(model, lr=lr)
            elif args.phase == 'test':
                # denoiser_test(model)
                pass
            else:
                print('[!]Unknown phase')
                sys.exit(1)
    else:
        # print("CPU\n")
        print "CPU Not supported yet!"
        sys.exit(1)
Example #4
0
def test():
    config = None
    if args.use_gpu == 1:
        config = tf.ConfigProto(gpu_options=tf.GPUOptions(
            per_process_gpu_memory_fraction=0.9))
    with tf.Session(config=config) as sess:
        model = denoiser(sess)
        denoiser_test(model)
Example #5
0
def main(_):
    if not os.path.exists(args.ckpt_dir):
        os.makedirs(args.ckpt_dir)
    if not os.path.exists(args.sample_dir):
        os.makedirs(args.sample_dir)
    if not os.path.exists(args.test_dir):
        os.makedirs(args.test_dir)
    #if not os.path.exists(args.save_dir):
    #    os.makedirs(args.save_dir)

    if args.use_gpu:
        # added to control the gpu memory
        print("GPU\n")

        # uses the GPU #0 on linux machines
        os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
        os.environ["CUDA_VISIBLE_DEVICES"] = "0"
        print("\n\nExecution Environment:\n\n{}".format(
            device_lib.list_local_devices()))

        gpu_options = tf.compat.v1.GPUOptions(
            per_process_gpu_memory_fraction=0.90)
        with tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(
                gpu_options=gpu_options)) as sess:
            model = denoiser(sess, args.batch_size)
            if args.phase == 'train':
                denoiser_train(model, lr=args.lr)
            elif args.phase == 'test':
                denoiser_test(model)
            else:
                print('[!]Unknown phase')
                exit(0)
    else:
        print("CPU\n")
        with tf.compat.v1.Session() as sess:
            model = denoiser(sess, batch_size=args.batch_size)
            if args.phase == 'train':
                denoiser_train(model, lr=args.lr)
            elif args.phase == 'test':
                pdb.set_trace()
                denoiser_test(model)
            else:
                print('[!]Unknown phase')
                exit(0)
Example #6
0
def main(_):
    if args.use_gpu:
        # added to control the gpu memory
        print("Run Tensorflow [GPU]\n")
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.9)
        with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
            model = denoiser(sess)
            denoiser_test(model)
    else:
        print "CPU Not supported yet!"
        sys.exit(1)
Example #7
0
def main(_):
    if not os.path.exists(args.ckpt_dir):
        os.makedirs(args.ckpt_dir)
    if not os.path.exists(args.sample_dir):
        os.makedirs(args.sample_dir)
    if not os.path.exists(args.test_dir):
        os.makedirs(args.test_dir)

    config = tf.ConfigProto(
        device_count={"CPU": 32},  # limit to num_cpu_core CPU usage  
        inter_op_parallelism_threads=16,
        intra_op_parallelism_threads=32)

    lr = args.lr * np.ones([args.epoch])
    lr[30:] = lr[0] / 10.0
    if args.use_gpu:
        # added to control the gpu memory
        print("GPU\n")
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.9)
        with tf.Session(config=tf.ConfigProto(
                gpu_options=gpu_options)) as sess:
            model = denoiser(sess, sigma=args.sigma)
            if args.phase == 'train':
                denoiser_train(model, lr=lr)
            elif args.phase == 'test':
                denoiser_test(model)
            else:
                print('[!]Unknown phase')
                exit(0)
    else:
        print("CPU\n")
        with tf.device("/cpu:0"):
            with tf.Session(config=config) as sess:
                model = denoiser(sess, sigma=args.sigma)
                if args.phase == 'train':
                    denoiser_train(model, lr=lr)
                elif args.phase == 'test':
                    denoiser_test(model)
                else:
                    print('[!]Unknown phase')
                    exit(0)
Example #8
0
def main(_):
    if not os.path.exists(args.ckpt_dir):
        os.makedirs(args.ckpt_dir)
    if not os.path.exists(args.sample_dir):
        os.makedirs(args.sample_dir)
    if not os.path.exists(args.test_dir):
        os.makedirs(args.test_dir)
    print(args)
    lr_init = args.lr
    lr_decay = [1.0, 0.2]
    if args.use_gpu:
        # added to control the gpu memory
        print("GPU\n")
        gpu_options = tf.GPUOptions(allow_growth=True)
        #gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.7)
        print(gpu_options)
        with tf.Session(config=tf.ConfigProto(
                gpu_options=gpu_options)) as sess:
            model = denoiser(sess,
                             sigma=args.sigma,
                             kstage=args.kstage,
                             batch_size=args.batch_size,
                             config=args)
            if args.phase == 'train':
                denoiser_train(model, lr_init=lr_init, lr_decay=lr_decay)
            elif args.phase == 'test':
                denoiser_test(model)
            else:
                print('[!]Unknown phase')
                exit(0)
    else:
        print("CPU\n")
        with tf.Session() as sess:
            model = denoiser(sess, sigma=args.sigma)
            if args.phase == 'train':
                denoiser_train(model, lr=lr)
            elif args.phase == 'test':
                denoiser_test(model)
            else:
                print('[!]Unknown phase')
                exit(0)
Example #9
0
def main(_):
    if args.use_gpu:
        # added to control the gpu memory
        print("GPU\n")
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.9)
        with tf.Session(config=tf.ConfigProto(
                gpu_options=gpu_options)) as sess:
            model = denoiser(sess)
            if args.phase == 'inference':
                denoiser_inference(model)
            else:
                print('[!]Unknown phase')
                exit(0)
    else:
        print("CPU\n")
        with tf.Session() as sess:
            model = denoiser(sess)
            if args.phase == 'inference':
                denoiser_inference(model)
            else:
                print('[!]Unknown phase')
                exit(0)
Example #10
0
def main(_):
    if not os.path.exists(args.ckpt_dir):
        os.makedirs(args.ckpt_dir)
    if not os.path.exists(args.sample_dir):
        os.makedirs(args.sample_dir)
    if not os.path.exists(args.test_dir):
        os.makedirs(args.test_dir)

    lr = args.lr * np.ones([args.epoch])
    lr[30:] = lr[0] / 10.0
    if args.use_gpu:
        # added to control the gpu memory
        print("GPU\n")
        #gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.9)
        config = tf.ConfigProto(allow_soft_placement=True)
        #config.gpu_options.allow_growth = True
        #config.gpu_options.per_process_gpu_memory_fraction = 0.9
        with tf.Session(config=config) as sess:
            #with tf.device('/gpu:1'), tf.Session() as sess:
            model = denoiser(sess, sigma=args.sigma)
            if args.phase == 'train':
                denoiser_train(model, lr=lr)
            elif args.phase == 'test':
                denoiser_test(model)
            else:
                print('[!]Unknown phase')
                exit(0)
    else:
        print("CPU\n")
        with tf.Session() as sess:
            model = denoiser(sess, sigma=args.sigma)
            if args.phase == 'train':
                denoiser_train(model, lr=lr)
            elif args.phase == 'test':
                denoiser_test(model)
            else:
                print('[!]Unknown phase')
                exit(0)
Example #11
0
def main(_):
    if not os.path.exists(checkpoint_dir):
        os.makedirs(checkpoint_dir)
    if not os.path.exists(sample_dir):
        os.makedirs(sample_dir)
    if not os.path.exists(test_dir):
        os.makedirs(test_dir)

    if args.use_gpu:
        # added to control the gpu memory
        print("GPU\n")
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.9)
        with tf.Session(config=tf.ConfigProto(
                gpu_options=gpu_options)) as sess:
            model = denoiser(sess, ip=ip)
            if args.phase == 'train':
                denoiser_train(model)
            elif args.phase == 'test':
                denoiser_test(model)
            elif args.phase == 'test_repeatability':
                denoiser_test2(model)
            elif args.phase == 'generate_map':
                denoiser_generate_map(model)
            else:
                print('[!]Unknown phase')
                exit(0)
    else:
        print("CPU\n")
        with tf.Session() as sess:
            model = denoiser(sess, ip=ip)
            if args.phase == 'train':
                denoiser_train(model, lr=lr)
            elif args.phase == 'test':
                denoiser_test(model)
            else:
                print('[!]Unknown phase')
                exit(0)
Example #12
0
def main(_):
    if not os.path.exists(args.ckpt_dir):
        os.makedirs(args.ckpt_dir)
    if not os.path.exists(args.sample_dir):
        os.makedirs(args.sample_dir)
    if not os.path.exists(args.test_dir):
        os.makedirs(args.test_dir)
    if not os.path.exists('./tmp_jpeg'):
        os.makedirs('./tmp_jpeg')

    lr = args.lr * np.ones([args.epoch])
    lr[30:] = lr[0] / 10.0
    if args.use_gpu:
        # added to control the gpu memory
        print("GPU\n")
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.9)
        with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
            model = denoiser(sess, sigma=args.sigma)
            if args.phase == 'train':
                denoiser_train(model, lr=lr)
            elif args.phase == 'test':
                denoiser_test(model)
            else:
                print('[!]Unknown phase')
                exit(0)
    else:
        print("CPU\n")
        with tf.Session() as sess:
            model = denoiser(sess, sigma=args.sigma)
            if args.phase == 'train':
                denoiser_train(model, lr=lr)
            elif args.phase == 'test':
                denoiser_test(model)
            else:
                print('[!]Unknown phase')
                exit(0)
Example #13
0
def main(_):
    if not os.path.exists(args.ckpt_dir):
        os.makedirs(args.ckpt_dir)
    if not os.path.exists(args.test_dir):
        os.makedirs(args.test_dir)

    lr = args.lr * np.ones([args.epoch])
    lr[30:] = lr[0] / 10.0


    print("CPU\n")
    with tf.Session() as sess:
        model = denoiser(sess)
        if args.phase == 'train':
            denoiser_train(model, lr=lr)
        elif args.phase == 'test':
            denoiser_test(model)
        else:
            print('[!]Unknown phase')
            exit(0)
Example #14
0
def test_SAR2SAR(img):
    sys.path.append('SAR2SAR-GRD-test')

    import tensorflow.compat.v1 as tf
    tf.disable_v2_behavior()
    from model import denoiser
    tf.reset_default_graph()


    # DEFINE PARAMETERS OF SPECKLE AND NORMALIZATION FACTOR
    M = 10.089038980848645
    m = -1.429329123112601
    L = 1
    c = (1 / 2) * (special.psi(L) - np.log(L))
    cn = c / (M - m)  # normalized (0,1) mean of log speckle

    def normalize_sar(im):
        return ((np.log(im + np.spacing(1)) - m) * 255 / (M - m)).astype('float32')

    img = normalize_sar(img)/255.0

    with tf.Session() as sess:
        model = denoiser(sess)
        model.load('SAR2SAR-GRD-test/checkpoint')
        Y_ = tf.placeholder(tf.float32, [None, None, None, 1],
                                 name='clean_image')
        pred = sess.run([model.Y], feed_dict={model.Y_: img})

    sys.path.remove('SAR2SAR-GRD-test')

    def denormalize_sar(im):
        return np.exp((M - m) * (np.squeeze(im)).astype('float32') + m)

    

    return pred[0][0,...]
Example #15
0
def test():
    # gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.9)
    with tf.Session() as sess:
        model = denoiser(sess)
        denoiser_test(model)
Example #16
0
def main(_):
    if not os.path.exists(args.ckpt_dir):
        os.makedirs(args.ckpt_dir)
    if not os.path.exists(args.sample_dir):
        os.makedirs(args.sample_dir)
    if not os.path.exists(args.test_dir):
        os.makedirs(args.test_dir)

    config = tf.ConfigProto(
        device_count={"CPU": 32},  # limit to num_cpu_core CPU usage  
        inter_op_parallelism_threads=16,
        intra_op_parallelism_threads=32)

    lr = args.lr * np.ones([args.epoch])
    lr[30:] = lr[0] / 10.0
    if args.phase == 'test':
        with tf.device("/cpu:0"):
            with tf.Session(config=config) as sess:
                model = denoiser(sess, sigma=args.sigma, isDenoise=True)
                denoiser_test(model)
    elif args.phase == 'testcmp':
        with tf.device("/cpu:0"):
            with tf.Session(config=config) as sess:
                model = cmpdenoiser(sess)
                denoiser_test(model)
    elif args.phase == 'train':
        # distribution check
        server, cluster = createServer()
        if FLAGS.job_name == "ps":
            server.join()
        elif FLAGS.job_name == "worker":
            worker_device = "/job:worker/task:%d" % FLAGS.task_index
            with tf.device(
                    tf.train.replica_device_setter(worker_device=worker_device,
                                                   ps_device="/job:ps/cpu:0",
                                                   cluster=cluster)):
                model = denoiser(sigma=args.sigma)
                denoiser_train(model, server, FLAGS.task_index, lr=lr)
    elif args.phase == 'trainconv':
        server, cluster = createServer()
        if FLAGS.job_name == "ps":
            server.join()
        elif FLAGS.job_name == "worker":
            worker_device = "/job:worker/task:%d" % FLAGS.task_index
            with tf.device(
                    tf.train.replica_device_setter(worker_device=worker_device,
                                                   ps_device="/job:ps/cpu:0",
                                                   cluster=cluster)):
                model = convdenoiser()
                conv_denoise_train(model, server, FLAGS.task_index, lr=lr)
    elif args.phase == 'trainconvpatch':
        server, cluster = createServer()
        if FLAGS.job_name == "ps":
            server.join()
        elif FLAGS.job_name == "worker":
            worker_device = "/job:worker/task:%d" % FLAGS.task_index
            with tf.device(
                    tf.train.replica_device_setter(worker_device=worker_device,
                                                   ps_device="/job:ps/cpu:0",
                                                   cluster=cluster)):
                model = convpatchdenoiser(num_workers=len(
                    FLAGS.worker_hosts.split(",")),
                                          is_chief=FLAGS.task_index == 0)
                conv_patch_denoise_train(model, server, FLAGS.task_index)
    elif args.phase == 'traincmp':
        server, cluster = createServer()
        if FLAGS.job_name == "ps":
            server.join()
        elif FLAGS.job_name == "worker":
            worker_device = "/job:worker/task:%d" % FLAGS.task_index
            with tf.device(
                    tf.train.replica_device_setter(worker_device=worker_device,
                                                   ps_device="/job:ps/cpu:0",
                                                   cluster=cluster)):
                cmp_denoise_train(server,
                                  FLAGS.task_index,
                                  num_worker=FLAGS.worker_hosts.split(","))
    elif args.phase == 'compare':
        denoise_files = glob('./data/test/{}/*.jpg'.format(args.denoise_set))
        noise_files = glob('./data/test/{}/*.jpg'.format(args.denoise_set +
                                                         '_nodenoise'))
        diffs = 0.0
        for file in denoise_files:
            noise_file = find_match_file([file], noise_files)
            noise_image = load_images(noise_file[0]).astype(np.float32) / 255.0
            denoise_image = load_images(file).astype(np.float32) / 255.0
            save_img = np.clip(255 * noise_image, 0, 255).astype('uint8')

            save_images(
                os.path.join(args.test_dir,
                             file.split("/")[-1].split("_")[0] + ".jpg"),
                save_img)
            diff = cal_psnr(denoise_image, noise_image)
            diffs += diff
        diffs = diffs / len(denoise_files)
    elif args.phase == 'alone_conv_patch':
        with tf.device("/cpu:0"):
            model = convpatchdenoiser()
            conv_patch_denoise_train(model)
    elif args.phase == 'batch_cmp':
        place = [n for n in range(0, 20)]
        print(place)
        np.random.shuffle(place)
        print(place)
        # with load_data(filepath='./data/img_denoise_pats.npy', rand=False) as data_denoise:
        #     with load_data(filepath='./data/img_noise_pats.npy', rand=False) as data_noise:
        #         numBatch = int(data_denoise.shape[0] / 128)
        #         noise_num = int(data_denoise.shape[0] / 128)
        #         print ('%d---%d' % (numBatch, noise_num))
        #         for i in range(0, 10):
        #             num = random.randint(0,numBatch)
        #             print (num)
        #             denoise = data_denoise[num:num + 1, :, :, :]
        #             noise = data_noise[num:num + 1, :, :, :]
        #             save_images(os.path.join(args.test_dir, 'denoised%d.jpg' % i), denoise)
        #             save_images(os.path.join(args.test_dir, 'noise%d.jpg' % i), noise)
    else:
        print('[!]Unknown phase')
        exit(0)
Example #17
0
def main(_):

    #the following string is attached to checkpoint, log and image folder names
    eps_str = str(int(np.log10(args.eps)))
    name = "NET_" + args.cost + "_eps1e" + eps_str + "_sigma" + str(
        int(args.sigma)) + "_" + str(args.type)

    ckpt_dir = args.ckpt_dir + "/" + name
    sample_dir = args.sample_dir + "/" + name
    test_dir = args.test_dir + "/" + name
    log_dir = args.log_dir + "/" + name

    if not os.path.exists(ckpt_dir):
        os.makedirs(ckpt_dir)

    #learning rate decay schedule
    lr = args.lr * np.ones([args.epoch])
    lr[100:] = lr[0] / 10.0  #lr decay after 100 epochs

    #dataset
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

    print("Model: %s" % (name))
    if args.use_gpu:
        # added to control the gpu memory
        print("GPU\n")
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.9)
        with tf.Session(config=tf.ConfigProto(
                gpu_options=gpu_options)) as sess:
            model = denoiser(sess,
                             dataset=mnist,
                             sigma=args.sigma,
                             eps=args.eps,
                             cost_str=args.cost,
                             ckpt_dir=ckpt_dir,
                             sample_dir=sample_dir,
                             log_dir=log_dir)
            if args.phase == 'train':
                denoiser_train(model, lr=lr)
            elif args.phase == 'test':
                denoiser_test(model, test_dir)
            else:
                print('[!]Unknown phase')
                exit(0)
    else:
        print("CPU\n")
        with tf.Session() as sess:
            model = denoiser(sess,
                             dataset=mnist,
                             sigma=args.sigma,
                             eps=args.eps,
                             cost_str=args.cost,
                             ckpt_dir=ckpt_dir,
                             sample_dir=sample_dir,
                             log_dir=log_dir)
            if args.phase == 'train':
                denoiser_train(model, lr=lr)
            elif args.phase == 'test':
                denoiser_test(model, test_dir)
            else:
                print('[!]Unknown phase')
                exit(0)
Example #18
0
checkpoint_dir = '/content/SAR2SAR-test/checkpoint'
if not os.path.exists(args.test_dir):
    os.makedirs(args.test_dir)
from model import denoiser


def denoiser_test(denoiser):
    test_data = args.test_data
    print(
        "[*] Start testing on real data. Working directory: %s. Collecting data from %s and storing test results in %s"
        % (os.getcwd(), test_data, args.test_dir))
    test_files = glob((test_data + '/*.npy').format('float32'))
    denoiser.test(test_files,
                  ckpt_dir=checkpoint_dir,
                  save_dir=args.test_dir,
                  dataset_dir=test_data,
                  stride=args.stride_size)


if __name__ == '__main__':
    if args.use_gpu:
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.9)
        with tf.Session(config=tf.ConfigProto(
                gpu_options=gpu_options)) as sess:
            model = denoiser(sess)
            denoiser_test(model)
    else:
        with tf.Session() as sess:
            model = denoiser(sess)
            denoiser_test(model)
Example #19
0
# encoding: utf-8
from options import Options
from model import denoiser

from data_loader import load_test_data
import time

if __name__ == '__main__':

    args = Options().initialize()
    model = denoiser(args)
    if args.eval:
        model.eval()
    # data = load_test_data(args)
    # model.set_test_input(data)
    model.test_new(args, 64)
Example #20
0
    print(res)
    file.write(res + '\n')

#---------------------------------------------------------------------------
# experiment 2 : We denoise this image using a CNN Gaussian Denoiser(train with quantile) with all sigma
# Goal see the influence of the CNN
#---------------------------------------------------------------------------
list_ckp = [
    "./checkpoint", "./checkpoint_sar", "checkpoint_sar_norm",
    "./checkpoint_sar_1"
]
list_name = ["DuCNN25Nat", "DuCNN25Sar_quant", "DuCNN25Sar", "DuCNN13SarQuant"]
list_lamb = [1, 1, 1, 3]
if (True):
    print("eperiment 2:")
    model = denoiser(sess, sigma=25, add_noise=False)

    list_beta = [1, 1, 1, 4]
    for i in range(len(list_beta)):

        ckpt_dir = list_ckp[i]
        model.load(ckpt_dir)

        C = np.max(img_in) - np.min(img_in)
        b = img_in.min() / C
        img_inp = img_in / C - b
        img_input = img_inp.reshape(1, img_in.shape[1], img_in.shape[0], 1)
        out2, _, _ = model.denoise(img_input)
        out2 = out2.reshape(img_in.shape)
        out2 = C * (out2 + b)
        out2 = out2 + utils.debiased(args.L)
Example #21
0
def test():
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.9)
    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
        model = denoiser(sess)
        denoiser_test(model)
Example #22
0
# encoding: utf-8
from options import Options
from model import denoiser
from data_loader import Data_loader
import time
from torch.utils.data import DataLoader
import torchvision.utils as tv
from tensorboardX import SummaryWriter
import numpy as np
if __name__ == '__main__':
    args=Options().initialize()
    model = denoiser(args)
    writer = SummaryWriter('runs/threshold_16_vflip')
    start_epoch = 0
    start_time = time.time()
    print("start training....")
    model.print_networks(args.verbose)
    niter=0
    dataset = Data_loader()
    dataloader = DataLoader(dataset, batch_size=32, shuffle=True, num_workers=0, drop_last=False)
    batch_num=len(dataloader)
    for epoch in range(start_epoch, args.epoch):
        batch_id=0
        for labels, inputs in dataloader:
            batch_id = batch_id + 1
            data=[labels, inputs]
            input_widefield,input_confocal= model.set_input(data)
            # model.evaluate(iter_num, args) # whether pretrained
            model.optimize_parameters()
            loss = model.get_loss()