data_parser.set_defaults(valid='data/binary_sst/val.csv',
                         test='data/binary_sst/test.csv')

args = parser.parse_args()

if args.seed is not -1:
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed(args.seed)

train_data, val_data, test_data = data_config.apply(args)
ntokens = args.data_size
model = model.RNNFeaturizer(args.model, ntokens, args.emsize, args.nhid,
                            args.nlayers, 0.0, args.all_layers).cuda()

if args.fp16:
    model.half()

# load char embedding and recurrent encoder for featurization
with open(args.load_model, 'rb') as f:
    sd = torch.load(f)
    if 'encoder' in sd:
        sd = sd['encoder']

try:
    model.load_state_dict(sd)
except:
    # if state dict has weight normalized parameters apply and remove weight norm to model while loading sd
    apply_weight_norm(model.rnn)
    model.load_state_dict(sd)
    remove_weight_norm(model)
def detect(source, save_img=True):
    weights = opt.weights
    view_img = opt.view_img
    save_txt = opt.save_txt

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    #imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    #if classify:
    #  modelc = load_classifier(name='resnet101', n=2)  # initialize
    #  modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()

    img0 = source  # BGR
    img = letterbox(img0, new_shape=output_size)[0]
    img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
    img = np.ascontiguousarray(img)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]

    # Run inference
    #img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    img = torch.from_numpy(img).to(device)
    im0s = img0
    img = img.half() if half else img.float()  # uint8 to fp16/32
    img /= 255.0  # 0 - 255 to 0.0 - 1.0
    if img.ndimension() == 3:
        img = img.unsqueeze(0)

    # Inference
    pred = model(img, augment=opt.augment)[0]

    # Apply NMS
    pred = non_max_suppression(pred,
                               opt.conf_thres,
                               opt.iou_thres,
                               classes=opt.classes,
                               agnostic=opt.agnostic_nms)

    # Apply Classifier
    if classify:
        pred = apply_classifier(pred, modelc, img, im0s)

    # Process detections
    for i, det in enumerate(pred):  # detections per image
        s, im0 = '', im0s
        s += '%gx%g ' % img.shape[2:]  # print string
        gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
        if det is not None and len(det):
            # Rescale boxes from img_size to im0 size
            det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                      im0.shape).round()

            # Print results
            for c in det[:, -1].unique():
                n = (det[:, -1] == c).sum()  # detections per class
                s += '%g %ss, ' % (n, names[int(c)])  # add to string

            # Write results
            for *xyxy, conf, cls in reversed(det):
                if save_img or view_img:  # Add bbox to image
                    logging.info(cls)
                    if cls == 2 or cls == 5 or cls == 7:
                        label = '%s %.2f' % (names[int(cls)], conf)
                        plot_bbox_and_depth(xyxy,
                                            im0,
                                            label=label,
                                            color=colors[int(cls)])
                        #color_detection(im0, xyxy, color=colors[int(cls)])
                        logging.info('plot bbox')
Example #3
0
def detect(save_img=False):
    img_size = 512
    out = 'output'
    source = 'semioutput'
    weights = 'weights/yolov3-spp-ultralytics.pt'
    cfg_ = 'cfg/yolov3-spp.cfg'
    names_ = 'data/coco.names'
    fourcc = 'mp4'
    half = opt.half
    view_img = opt.view_img
    save_txt = opt.save_txt

    imgsz = img_size
    webcam = source == '0' or source.startswith('rtsp') or source.startswith(
        'http') or source.endswith('.txt')

    # Initialize
    device = torch_utils.select_device(
        device='cpu' if ONNX_EXPORT else opt.device)
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    os.makedirs(out)  # make new output folder

    # Initialize model
    model = Darknet(cfg_, imgsz)

    # Load weights
    attempt_download(weights)
    if weights.endswith('.pt'):  # pytorch format
        model.load_state_dict(
            torch.load(weights, map_location=device)['model'])
    else:  # darknet format
        load_darknet_weights(model, weights)

    # Second-stage classifier
    classify = False
    if classify:
        modelc = torch_utils.load_classifier(name='resnet101',
                                             n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model'])  # load weights
        modelc.to(device).eval()

    # Eval mode
    model.to(device).eval()

    # Fuse Conv2d + BatchNorm2d layers
    # model.fuse()
    half = half and device.type != 'cpu'  # half precision only supported on CUDA
    if half:
        model.half()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        torch.backends.cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = load_classes(names_)
    colors = [[random.randint(0, 255) for _ in range(3)]
              for _ in range(len(names))]

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img.float()
              ) if device.type != 'cpu' else None  # run once
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = torch_utils.time_synchronized()
        pred = model(img, augment=opt.augment)[0]
        t2 = torch_utils.time_synchronized()

        # to float
        if half:
            pred = pred.float()

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   multi_label=False,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections for image i
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s

            save_path = str(Path(out) / Path(p).name)
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  #  normalization gain whwh
            if det is not None and len(det):
                # Rescale boxes from imgsz to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].detach().unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        with open(save_path[:save_path.rfind('.')] + '.txt',
                                  'a') as file:
                            file.write(('%g ' * 5 + '\n') %
                                       (cls, *xywh))  # label format

                    if save_img or view_img:  # Add bbox to image
                        label = '%s %.2f' % (names[int(cls)], conf)
                        plot_bbox_and_depth(xyxy,
                                            im0,
                                            label=label,
                                            color=colors[int(cls)])
                        color_detection(im0, xyxy, color=colors[int(cls)])

            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1))

            # Stream results
            if view_img:
                cv2.imshow(p, im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*fourcc), fps,
                            (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        print('Results saved to %s' % os.getcwd() + os.sep + out)
        if platform == 'darwin':  # MacOS
            os.system('open ' + save_path)

    print('Done. (%.3fs)' % (time.time() - t0))