Example #1
0
def train(model, dataloader, optimizer, loss_fn, metric, params):
    model.train()

    loss_avg = utils.RunningAverage()
    output = []
    y = []
    with tqdm(total=len(dataloader)) as t:
        for X_batch, y_batch in dataloader:
            X_batch = X_batch.to(params.device)
            y_batch = y_batch.to(params.device)

            output_batch = model(X_batch)
            loss = loss_fn(output_batch, y_batch)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            loss_avg.update(loss.item())
            y.append(y_batch.data.cpu().numpy())
            output.append(output_batch.data.cpu().numpy())

            t.set_postfix(loss='{:05.3f}'.format(loss_avg()))
            t.update()

    output = np.concatenate(output, axis=0)
    y = np.concatenate(y, axis=0)
    metric_score = metric(output, y)
    avg_loss = loss_avg()
    return avg_loss, metric_score
Example #2
0
 def train_step(inp, ctxt, lbl, mask):
     with tf.GradientTape() as tape:
         pred = model((inp, ctxt))
         loss = loss_fn(lbl, pred, mask)
     grads = tape.gradient(loss, model.trainable_variables)
     optimizer.apply_gradients(zip(grads, model.trainable_variables))
     train_loss(loss)
Example #3
0
def evaluate(model, loss_fn, dataloader, data_types, metrics, params):
    model.eval()

    overall_summary = []

    for i, batch in enumerate(dataloader):

        if data_types[0] == "glyph" or data_types[0] == "image":
            # Get batch
            X_batch = batch[data_types[0]]
            Y_batch = batch[data_types[1]]
            if params.use_gpu:
                X_batch = X_batch.cuda(non_blocking=True)
                Y_batch = Y_batch.cuda(non_blocking=True)
            X_batch = Variable(X_batch)
            Y_batch = Variable(Y_batch)

            # Predict
            Y_pred_batch = model(X_batch)

        elif data_types[0] == "svg":
            # Get batch
            X_batch = batch[data_types[0]]
            X_len = batch["len"]
            Y_batch = batch[data_types[1]]
            if params.use_gpu:
                X_batch = X_batch.cuda(non_blocking=True)
                X_len = X_len.cuda(non_blocking=True)
                Y_batch = Y_batch.cuda(non_blocking=True)
            X_batch = Variable(X_batch)
            Y_batch = Variable(Y_batch)

            # Predict
            Y_pred_batch = model(X_batch, X_len)

        loss = loss_fn(Y_pred_batch.float(), Y_batch.float())

        Y_pred_batch = Y_pred_batch.data.cpu()
        Y_batch = Y_batch.data.cpu()
        summary = {
            metric: metrics[metric](Y_pred_batch, Y_batch)
            for metric in metrics
        }
        summary['loss'] = loss.item()
        overall_summary.append(summary)

    metrics_mean = {
        metric: np.mean([s[metric] for s in overall_summary])
        for metric in overall_summary[0]
    }
    metrics_string = " ; ".join("{}: {:05.5f}".format(k, v)
                                for k, v in metrics_mean.items())
    logging.info("- Eval metrics : " + metrics_string)

    return metrics_mean
Example #4
0
def train_step(M, sample, opt, queue, max_queue_size, report=False):
  pov, white, black, score = sample
  pred = M(pov, white, black)
  loss = model.loss_fn(score, pred)
  if report:
    print(loss.item())
  loss.backward()
  if(len(queue) >= max_queue_size):
    queue.pop(0)
  queue.append(loss.item())
  opt.step()
  M.zero_grad()
Example #5
0
def train_epoch(epoch_idx):
    """Train one epoch"""
    loss_history = []
    model.train()
    # shuffle training data for sgd training
    np.random.shuffle(train_data)
    for i, (feat, adj_mtx, match_idx) in enumerate(train_data):
        if IS_CUDA:
            feat = feat.cuda()
            adj_mtx = adj_mtx.cuda()
        optimizer.zero_grad()
        out = model(feat, adj_mtx)
        loss = loss_fn(out, match_idx)
        loss_history.append((loss / len(match_idx)).item())
        loss.backward()
        optimizer.step()
    print("Epoch {}\t avg. loss: {:.4f}".format(epoch_idx + 1,
                                                np.mean(loss_history)))
Example #6
0
def evaluate(model, dataloader, loss_fn, metric, params, test_mode=False):
    model.eval()

    loss_avg = utils.RunningAverage()
    output = []
    y = []

    with torch.no_grad():
        for X_batch, y_batch in dataloader:
            X_batch = X_batch.to(params.device)
            y_batch = y_batch.to(params.device)

            output_batch = model(X_batch)
            loss = loss_fn(output_batch, y_batch)
            loss_avg.update(loss.item())

            y.append(y_batch.data.cpu().numpy())
            output.append(output_batch.data.cpu().numpy())

    avg_loss = loss_avg()
    output = np.concatenate(output, axis=0)
    y = np.concatenate(y, axis=0)
    metric_score = metric(output, y, test_mode)
    return avg_loss, metric_score
Example #7
0
def train(model,
          optimizer,
          loss_fn,
          dataloader,
          data_types,
          metrics,
          params,
          pause=False):
    """ Train for a single epoch"""
    model.train()

    epoch_summary = []
    loss_running_avg = train_util.RunningAverage()

    with tqdm(total=len(dataloader)) as t:

        for i, batch in enumerate(dataloader):

            if data_types[0] == "glyph" or data_types[0] == "image":
                # Get batch
                X_batch = batch[data_types[0]]
                Y_batch = batch[data_types[1]]
                if params.use_gpu:
                    X_batch = X_batch.cuda(non_blocking=True)
                    Y_batch = Y_batch.cuda(non_blocking=True)
                X_batch = Variable(X_batch)
                Y_batch = Variable(Y_batch)

                # Forward prop
                Y_pred_batch = model(X_batch, pause)

            elif data_types[0] == "svg":
                # Get batch
                X_batch = batch[data_types[0]]
                X_len = batch["len"]
                Y_batch = batch[data_types[1]]
                if params.use_gpu:
                    X_batch = X_batch.cuda(non_blocking=True)
                    X_len = X_len.cuda(non_blocking=True)
                    Y_batch = Y_batch.cuda(non_blocking=True)
                X_batch = Variable(X_batch)
                Y_batch = Variable(Y_batch)

                # Forward prop
                Y_pred_batch = model(X_batch, X_len)

            loss = loss_fn(Y_pred_batch.float(), Y_batch.float())
            optimizer.zero_grad()

            # Backward prop
            loss.backward()

            # Gradient step
            optimizer.step()

            # Evaluate summaries
            if i % params.summary_steps == 0:
                Y_pred_batch = Y_pred_batch.data.cpu()
                Y_batch = Y_batch.data.cpu()
                summary = {
                    metric: metrics[metric](Y_pred_batch, Y_batch)
                    for metric in metrics
                }
                summary['loss'] = loss.item()
                epoch_summary.append(summary)

            loss_running_avg.update(loss.item())
            t.set_postfix(loss='{:05.5f}'.format(loss_running_avg()))
            t.update()

    metrics_mean = {
        metric: np.mean([s[metric] for s in epoch_summary])
        for metric in epoch_summary[0]
    }
    metrics_string = " ; ".join("{}: {:05.5f}".format(k, v)
                                for k, v in metrics_mean.items())
    logging.info("- Train metrics: " + metrics_string)
Example #8
0
import torch
import torch.nn as nn
from torch import optim
from sklearn.datasets import load_digits

from random import randint

from model import NeuralNet, loss_fn, device

digits = load_digits()

X = torch.tensor(digits['data'], dtype=torch.float32).to(device)
Y = torch.tensor(digits['target'], dtype=torch.int64).to(device)

model = NeuralNet()
optimizer = optim.Adam(model.parameters())

i = 100
for epoch in range(i):
    optimizer.zero_grad()
    y_predict = model(X)
    loss = loss_fn(y_predict, Y)
    loss.backward()
    optimizer.step()

    if epoch % 10 == 0:
        print('Epoch {:4d}/{} Cost: {:.6f}'.format(epoch, i, loss.item()))
Example #9
0
def train(args):
    """
    Train UNet from datasets
    """

    # dataset
    print('Reading dataset from {}...'.format(args.dataset_path))
    train_dataset = SSDataset(dataset_path=args.dataset_path, is_train=True)
    val_dataset = SSDataset(dataset_path=args.dataset_path, is_train=False)
    train_dataloader = DataLoader(dataset=train_dataset,
                                  batch_size=args.batch_size,
                                  shuffle=True)
    val_dataloader = DataLoader(dataset=val_dataset,
                                batch_size=args.batch_size,
                                shuffle=False)

    # mask
    with open(args.mask_json_path, 'w', encoding='utf-8') as mask:
        colors = SSDataset.all_colors
        mask.write(json.dumps(colors))
        print('Mask colors list has been saved in {}'.format(
            args.mask_json_path))

    # model
    net = UNet(in_channels=3, out_channels=5)
    if args.cuda:
        net = net.cuda()

    # setting
    lr = args.lr  # 1e-3
    optimizer = optim.Adam(net.parameters(), lr=lr)
    criterion = loss_fn

    # run
    train_losses = []
    val_losses = []
    print('Start training...')
    for epoch_idx in range(args.epochs):
        # train
        net.train()
        train_loss = 0
        for batch_idx, batch_data in enumerate(train_dataloader):
            xs, ys = batch_data
            if args.cuda:
                xs = xs.cuda()
                ys = ys.cuda()
            ys_pred = net(xs)
            loss = criterion(ys_pred, ys)
            train_loss += loss

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        # val
        net.eval()
        val_loss = 0
        for batch_idx, batch_data in enumerate(val_dataloader):
            xs, ys = batch_data
            if args.cuda:
                xs = xs.cuda()
                ys = ys.cuda()
            ys_pred = net(xs)
            loss = loss_fn(ys_pred, ys)
            val_loss += loss

        train_losses.append(train_loss)
        val_losses.append(val_loss)
        print('Epoch: {}, Train total loss: {}, Val total loss: {}'.format(
            epoch_idx + 1, train_loss.item(), val_loss.item()))

        # save
        if (epoch_idx + 1) % args.save_epoch == 0:
            checkpoint_path = os.path.join(
                args.checkpoint_path,
                'checkpoint_{}.pth'.format(epoch_idx + 1))
            torch.save(net.state_dict(), checkpoint_path)
            print('Saved Checkpoint at Epoch {} to {}'.format(
                epoch_idx + 1, checkpoint_path))

    # summary
    if args.do_save_summary:
        epoch_range = list(range(1, args.epochs + 1))
        plt.plot(epoch_range, train_losses, 'r', label='Train loss')
        plt.plot(epoch_range, val_loss, 'g', label='Val loss')
        plt.imsave(args.summary_image)
        print('Summary images have been saved in {}'.format(
            args.summary_image))

    # save
    net.eval()
    torch.save(net.state_dict(), args.model_state_dict)
    print('Saved state_dict in {}'.format(args.model_state_dict))
Example #10
0
sim = nn.CosineSimilarity()
print(net)
print("Running training loop")
cost_book = []
val_acc_book = []
for j in range(N_EPOCH):
    cost = 0
    pbar = tqdm(dl)
    for i, b in enumerate(pbar):
        opt.zero_grad()

        o1 = net(b['q1'].cuda())
        o2 = net(b['q2'].cuda())

        loss = loss_fn(o1, o2, device='cuda')
        l = loss.item()
        cost += l
        loss.backward()
        opt.step()
        pbar.set_postfix({'Epoch': j + 1, 'Train_loss': l})

    pbar.close()

    print(f"\nEpoch Loss : {cost / (i + 1):.3f}\n")
    cost_book.append(cost / (i + 1))
    print("\nRunning on validation set\n")
    with torch.no_grad():
        acc = accuracy_score(vdl, net, sim, device='cuda')
        val_acc_book.append(acc)
        print(f"\nAccuracy of val set {acc:.3f}%\n")
Example #11
0
        params = util.Params()
        params.update(args.model_dir)
        model_dir = args.model_dir
    else:
        model_dir_path = os.path.join(".", "model")
        if not os.path.isdir(model_dir_path):
            os.mkdir(model_dir_path)
        model_dir = model_dir_path

    params.cuda = torch.cuda.is_available()

    alov = ALOVDataset('/large_storage/imagedata++',
                       '/large_storage/alov300++_rectangleAnnotation_full',
                       transform)

    dataloader = DataLoader(alov, batch_size=params.batch_size)

    use_gpu = torch.cuda.is_available()

    model = model.Re3Net().cuda() if use_gpu else model.Re3Net()
    optimizer = optim.Adam(model.parameters(), lr=params.learning_rate)

    net = 0

    loss_fn = model.loss_fn(params.cuda)

    # Train the model
    logging.info("Starting training for {} epoch(s)".format(params.num_epochs))
    train_and_evaluate(model, dataloader, dataloader, optimizer, loss_fn, 0,
                       params, model_dir, args.restore_file)
Example #12
0
def get_validation_loss(M, sample):
  with torch.no_grad():
    pov, white, black, score = sample
    pred = M(pov, white, black)
    loss = model.loss_fn(score, pred).detach()
  return loss
     act_fn=model_settings['fc_fn_1'],
     dir_npy=weight_dir)
 # второй слой fully connected сети
 fc_y_2, fc_w_2, fc_b_2 = model.fc_multiplication(
     y_l_minus_1=fc_y_1,
     w_l=fc_w_2,
     w_l_name='fc_w_2',
     b_l=fc_b_2,
     b_l_name='fc_b_2',
     neurons=len(
         y_true
     ),  # количество нейронов на выходе моледи равно числу классов
     act_fn=model_settings['fc_fn_2'],
     dir_npy=weight_dir)
 # ошибка модели
 fc_error = model.loss_fn(y_true, fc_y_2, feed=True)
 # сохранение значений loss и accuracy
 loss_change.append(fc_error.sum())
 accuracy_change.append(y_true.argmax() == fc_y_2.argmax())
 # обратное прохожение по сети
 if train_model:
     # backprop через loss-функцию
     dEdfc_y_2 = model.loss_fn(y_true, fc_y_2, feed=False)
     # backprop через второй слой fc-сети
     dEdfc_y_1, fc_w_2, fc_b_2 = model.fc_backpropagation(
         y_l_minus_1=fc_y_1,
         dEdy_l=dEdfc_y_2,
         y_l=fc_y_2,
         w_l=fc_w_2,
         b_l=fc_b_2,
         act_fn=model_settings['fc_fn_2'],