Example #1
0
 def predict_add(img_path):
     height, width, channels = 36, 60, 4
     sum = 0
     img_processed = preprocess_img(img_path)
     if not img_processed:
         return None
     for i, img_array in enumerate(img_processed):
         print(img_array.shape)
         img_array = img_array.reshape(1, img_array.shape[0], width,
                                       channels)
         value = predict_img(img_array, model=mode[i], mapp=cls_map[i])
         sum += value
     return sum
Example #2
0
def save_img():
    file = request.files['image']
    file.save(os.path.join(app.config['UPLOAD_FOLDER'], file.filename))
    result = predict_img(file.filename)
    print(result)
    return result
        in_file = args.test + file_name + "/images/" + file_name + ".png"
        out_file = args.save + file_name + ".png"

        print("\nPredicting image {} ...".format(in_file))
        original_img = Image.open(in_file)

        # 元画像の大きさを保存しておく
        original_width = original_img.size[0]
        original_height = original_img.size[1]
        original_img = np.asarray(original_img)

        # 所定の大きさにresize
        resized_img = to_square(original_img, args.size)

        # U-Netを用いてsegentation(確率値を出力)
        probs = predict_img(net, resized_img, args.gpu)

        # もとの大きさに戻す
        probs_resized = from_square(probs, (original_height, original_width))

        # ノイズ除去 & 二値化
        dst_img = remove_noise(probs_resized,
                               (original_height, original_width), original_img)
        dst_img = (dst_img * 255).astype(np.uint8)

        # 真ん中を穴埋め
        if "b83d1d77935b6cfd44105b54600ffc4b6bd82de57dec65571bcb117fa8398ba3" in in_file:
            print("zzzzzzzzzzzzzzzzzz")
        else:
            dst_img = fill(dst_img)
Example #4
0
        out_file = args.save + file_name + ".png"

        print("\nPredicting image {} ...".format(in_file))
        original_img = Image.open(in_file)
        original_width = original_img.size[0]
        original_height = original_img.size[1]
        original_img_array = np.asarray(original_img)

        # 染色方法を識別
        image_type = imagetype_classification(in_file)

        resized_img = original_img.resize(SIZE)
        #resized_img = original_img
        resized_img_array = np.array(resized_img)

        print(image_type, "\n")
        dst_img_array = predict_img(net, resized_img_array, args.gpu)
        dst_img_array = morphology(dst_img_array, iterations=1)

        dst_img = Image.fromarray(dst_img_array * 255)
        dst_img_resized = dst_img.resize((original_width, original_height))
        print(original_width, original_height)
        #dst_img_resized_array = np.asarray(dst_img_resized)

        #devide = Devide(original_img_array, dst_img_resized_array)
        #out = devide.make_mask()
        #result = Image.fromarray((out).astype(numpy.uint8))
        result = dst_img_resized

        result.save(out_file)
Example #5
0
    for file_name in os.listdir(args.test):
        in_file = args.test + file_name + "/images/" + file_name + ".png"
        out_file = args.save + file_name + ".png"

        print("\nPredicting image {} ...".format(in_file))
        img = Image.open(in_file)
        original_width = img.size[0]
        original_height =  img.size[1]
        img_array = np.asarray(img)

        # 染色方法ごとに処理を分ける
        image_type = imagetype_classification(in_file)
        print(image_type, "\n")
        if image_type == 1:
            out = predict_img(net, img, in_file, args.gpu, SIZE)
            out = morphology(out, iterations=0)
            result = Image.fromarray((out * 255).astype(numpy.uint8))
            result = result.resize((original_width, original_height))
        elif image_type == 2:
            out = predict_img(net, img, in_file, args.gpu, SIZE)
            out = morphology(out, iterations=0)
            result = Image.fromarray((out * 255).astype(numpy.uint8))
            result = result.resize((original_width, original_height))
        else:
            out = predict_img(net, img, in_file, args.gpu, SIZE)
            out = morphology(out, iterations=0)
            result = Image.fromarray((out * 255).astype(numpy.uint8))
            result = result.resize((original_width, original_height))

        result.save(out_file)