from model import rainFallRegressor import time import sys dataset = sys.argv[1] print "Model: ", dataset dfTrain = pd.read_csv("./data/xTrain_" + dataset + ".csv") yTrain = pd.read_csv("./data/yTrain_" + dataset + ".csv") tstart = time.time() subSet = yTrain.Id[int(len(yTrain) * .5)] dfValid = dfTrain[dfTrain.Id > subSet] yValid = yTrain[yTrain.Id > subSet] dfTrain = dfTrain[dfTrain.Id <= subSet] yTrain = yTrain[yTrain.Id <= subSet] marshallPalmer = rainFallRegressor(eps=1e-5, nepoch=15) marshallPalmer.resetRef() marshallPalmer.fit(dfTrain, yTrain) print marshallPalmer.score(dfValid, yValid['Expected']) tstop = time.time() print 'Time: ', tstop - tstart, ' sec'
import numpy as np import pandas as pd dataset = "ref_zdr" from model import rainFallRegressor dfTest = pd.read_csv("./data/xTest_" + dataset + ".csv") p = [-0.0056959094655 ,0.264798269811 ,-2.46924886623 , 1.82866 ] marshallPalmer = rainFallRegressor(eps=1e-5, nepoch=15) marshallPalmer.resetRefZdr() marshallPalmer.c = p[0] marshallPalmer.a1= p[1] marshallPalmer.a2= p[2] marshallPalmer.d = p[3] pred = marshallPalmer.predict(dfTest) dfPred = pd.DataFrame(range(717626), columns=[['Expected']]) dfPred.drop(0, inplace=True) dfPred.Expected = pred dfPred.fillna(dfPred.mean(), inplace=True) dfPred['Id'] = dfPred.index dfPred = dfPred[['Id','Expected']] dfPred.to_csv("./data/submit_" + dataset + ".csv", index=False)