def exp(net, model_name, attack, test_dataset, device): original_net = None image_size = (128, 128) if model_name == 'baseline': original_net = BaseCNN() elif model_name == 'nvidia': original_net = Nvidia() elif model_name == 'vgg16': original_net = Vgg16() original_net.load_state_dict(torch.load(model_name + '.pt')) original_net = original_net.to(device) original_net.eval() # print(ast_ori, ast_dist) test_y = pd.read_csv('ch2_final_eval.csv')['steering_angle'].values test_composed = transforms.Compose( [Rescale(image_size), Preprocess('baseline'), ToTensor()]) test_dataset = UdacityDataset(dataset_path, ['testing'], test_composed, 'test') test_generator = DataLoader(test_dataset, batch_size=64, shuffle=False) target = 0.3 ast_ori, _ = fgsm_ex(test_generator, original_net, model_name, target, device, len(test_dataset)) ast_dist, _ = fgsm_ex(test_generator, net, model_name, target, device, len(test_dataset)) print('fgsm:', ast_ori, ast_dist) advt_model = model_name + '_' + attack ast_ori, _ = advGAN_ex(test_generator, original_net, model_name, target, device, len(test_dataset)) ast_dist, _ = advGAN_ex(test_generator, net, advt_model, target, device, len(test_dataset)) print('advGAN:', ast_ori, ast_dist) advt_model = model_name + '_' + attack ast_ori, _ = advGAN_uni_ex(test_generator, original_net, model_name, target, device, len(test_dataset)) ast_dist, _ = advGAN_uni_ex(test_generator, net, advt_model, target, device, len(test_dataset)) print('advGAN_uni:', ast_ori, ast_dist) advt_model = model_name + '_' + attack ast_ori, _ = opt_uni_ex(test_generator, original_net, model_name, target, device, len(test_dataset)) ast_dist, _ = opt_uni_ex(test_generator, net, advt_model, target, device, len(test_dataset)) print('opt_uni:', ast_ori, ast_dist) ast_ori, _ = opt_ex(test_dataset, original_net, model_name, target, device, len(test_dataset)) ast_dist, _ = opt_ex(test_dataset, net, model_name, target, device, len(test_dataset)) print('opt:', ast_ori, ast_dist)
def cal_detection_rate(): for model_name in ['baseline', 'nvidia', 'vgg16']: # model_name = 'vgg16' device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if 'baseline' in model_name: net = BaseCNN() elif 'nvidia' in model_name: net = Nvidia() elif 'vgg16' in model_name: net = Vgg16(False) net.load_state_dict(torch.load(model_name + '.pt')) net.eval() net = net.to(device) dataset_path = '../udacity-data' root_dir = dataset_path test_composed = transforms.Compose([Rescale((128, 128)), Preprocess('baseline'), ToTensor()]) image_size = (128, 128) full_dataset = UdacityDataset(root_dir, ['testing'], test_composed, type_='test') full_indices = list(range(5614)) test_indices = list(np.random.choice(5614, int(0.2*5614), replace=False)) train_indices = list(set(full_indices).difference(set(test_indices))) train_dataset = torch.utils.data.Subset(full_dataset, train_indices) test_dataset = torch.utils.data.Subset(full_dataset, test_indices) test_data_loader = DataLoader(full_dataset, batch_size=1, shuffle=False) num_sample = len(full_dataset) target = 0.3 # attack_detection(model_name, net, test_data_loader, attack='fgsm') # attack_detection(model_name, net, test_data_loader, attack='advGAN') # attack_detection(model_name, net, test_data_loader, attack='advGAN_uni') # attack_detection(model_name, net, test_data_loader, attack='opt_uni') # attack_detection(model_name, net, test_data_loader, attack='opt') print('threshold', 0.01) attack_detection(model_name, net, test_data_loader, attack='fgsm', threshold=0.01) attack_detection(model_name, net, test_data_loader, attack='advGAN', threshold=0.01) attack_detection(model_name, net, test_data_loader, attack='advGAN_uni', threshold=0.01) attack_detection(model_name, net, test_data_loader, attack='opt_uni', threshold=0.01) attack_detection(model_name, net, test_data_loader, attack='opt', threshold=0.01)
def ex3_gen_adv(generator, gen_model, device): root_dir = '../udacity-data' adv_root_dir = '../udacity-data/adv_data' device = torch.device("cuda" if (torch.cuda.is_available()) else "cpu") image_size = (128, 128) test_composed = transforms.Compose([Rescale(image_size), Preprocess(), ToTensor()]) basecnn = 'baseline.pt' nvidia = 'nvidia.pt' vgg16 = 'vgg16.pt' model1 = BaseCNN() model1.to(device) model1.load_state_dict(torch.load(basecnn)) model1.eval() model2 = Nvidia() model2.to(device) model2.load_state_dict(torch.load(nvidia)) model2.eval() model3 = Vgg16() model3.to(device) model3.load_state_dict(torch.load(vgg16)) model3.eval() target_models = [] target_models.append(('baseline', model1)) #target_models.append(('nvidia', model2)) target_models.append(('vgg16', model3)) train = 0 attacks = ['advGAN_attack'] # attacks = ['fgsm_attack', 'universal_attack', 'advGAN_attack', 'advGAN_universal_attack', 'opt_attack',] target = 0.3 if train: hmb_list =[('HMB1', 1479424215880976321),('HMB2', 1479424439139199216),('HMB4', 1479425729831388501), ('HMB5', 1479425834048269765), ('HMB6', 1479426202229245710)] else: hmb_list = [('testing', 1479425441182877835)] # for (model_name, model) in target_models: # noise_u = np.load(model_name + '_universal_attack_noise.npy') # noise_u = torch.from_numpy(noise_u).type(torch.FloatTensor).to(device) # advGAN_generator = Generator(3,3, model_name).to(device) # advGAN_uni_generator = Generator(3,3, model_name).to(device) # advGAN_generator.load_state_dict(torch.load('./models/' + model_name + '_netG_epoch_60.pth')) # advGAN_uni_generator.load_state_dict(torch.load('./models/' + model_name + '_universal_netG_epoch_60.pth')) # noise_seed = np.load(model_name + '_noise_seed.npy') # noise_a = advGAN_uni_generator(torch.from_numpy(noise_seed).type(torch.FloatTensor).to(device)) # save_dir = os.path.join(adv_root_dir, model_name) for (model_name, model) in target_models: noise_u = np.load(model_name + '_universal_attack_noise.npy') noise_u = torch.from_numpy(noise_u).type(torch.FloatTensor).to(device) advGAN_generator = Generator(3,3, model_name).to(device) advGAN_uni_generator = Generator(3,3, model_name).to(device) advGAN_generator.load_state_dict(torch.load('./models/' + model_name + '_netG_epoch_60.pth')) advGAN_generator.eval() advGAN_uni_generator.load_state_dict(torch.load('./models/' + model_name + '_universal_netG_epoch_60.pth')) advGAN_uni_generator.eval() noise_seed = np.load(model_name + '_noise_seed.npy') noise_a = advGAN_uni_generator(torch.from_numpy(noise_seed).type(torch.FloatTensor).to(device)) save_dir = os.path.join(adv_root_dir, model_name) for (hmb, start) in hmb_list: print(model_name ,hmb) if train: train_dataset = UdacityDataset(root_dir, [hmb], test_composed, type_='train') else: train_dataset = UdacityDataset(root_dir, [hmb], test_composed, type_='test') generator = DataLoader(train_dataset, batch_size=64, shuffle=False, num_workers=8) for i, batch in enumerate(generator): batch_x = batch['image'] batch_x = batch_x.type(torch.FloatTensor) batch_x = batch_x.to(device) _, plt, _, perturbed_image = attack_test.fgsm_attack_test(model, batch_x, target, device, image_size=image_size) plt.close() if train: for j in range(len(perturbed_image)): np.save('../udacity-data/adv_data/' + model_name + '/fgsm_attack/' + hmb + '/' + str(i*64 + start + j), perturbed_image[j,:,:,:]) else: np.save('../udacity-data/adv_testing/' + model_name + '/fgsm_attack/' + hmb + '/npy/' + 'batch_' + str(i), perturbed_image) _, plt, perturbed_image = attack_test.optimized_uni_test(model, batch_x, device, noise_u, image_size=image_size) plt.close() if train: for j in range(len(perturbed_image)): np.save('../udacity-data/adv_data/' + model_name + '/universal_attack/' + hmb + '/' + str(i*64 + start + j), perturbed_image[j,:,:,:]) else: np.save('../udacity-data/adv_testing/' + model_name + '/universal_attack/' + hmb + '/npy/' + 'batch_' + str(i), perturbed_image) _, plt, perturbed_image = attack_test.advGAN_test(model, batch_x, advGAN_generator, device, image_size=image_size) plt.close() if train: for j in range(len(perturbed_image)): np.save('../udacity-data/adv_data/' + model_name + '/advGAN_attack/' + hmb + '/' + str(i*64 + start + j), perturbed_image[j,:,:,:]) else: np.save('../udacity-data/adv_testing/' + model_name + '/advGAN_attack/' + hmb + '/npy/' + 'batch_' + str(i), perturbed_image) _, plt, perturbed_image = attack_test.advGAN_uni_test(model, batch_x, device, noise_a, image_size=image_size) plt.close() if train: for j in range(len(perturbed_image)): np.save('../udacity-data/adv_data/' + model_name + '/advGAN_universal_attack/' + hmb + '/' + str(i*64 + start + j), perturbed_image[j,:,:,:]) else: np.save('../udacity-data/adv_testing/' + model_name + '/advGAN_universal_attack/' + hmb + '/npy/' + 'batch_' + str(i), perturbed_image) for (model_name, model) in target_models: for (hmb, start) in hmb_list: print(model_name, hmb) if train: train_dataset = UdacityDataset(root_dir, [hmb], test_composed, type_='train') else: train_dataset = UdacityDataset(root_dir, [hmb], test_composed, type_='test') # npy = np.array([], dtype=np.float64).reshape(1, 3, 128, 128) npy = None for i in range(0, len(train_dataset)): batch_x = train_dataset[i]['image'] batch_x = batch_x.unsqueeze(0) batch_x = batch_x.type(torch.FloatTensor) batch_x = batch_x.to(device) _, plt, perturbed_image = attack_test.optimized_attack_test(model, batch_x, target, device, image_size=image_size) plt.close() if train: for j in range(len(perturbed_image)): np.save('../udacity-data/adv_data/' + model_name + '/opt_attack/' + hmb + '/' + str(i*64 + start + j), perturbed_image[j,:,:,:]) else: if i == 0: npy = perturbed_image elif i % 64 != 0: npy = np.concatenate((npy, perturbed_image)) else: np.save('../udacity-data/adv_testing/' + model_name + '/opt_attack/' + hmb + '/npy/' + 'batch_' + str(i // 64 - 1), npy) npy = perturbed_image if not train: np.save('../udacity-data/adv_testing/' + model_name + '/opt_attack/' + hmb + '/npy/' + 'batch_' + str(5614 // 64), npy)
def experiment_1(): device = torch.device("cuda" if (torch.cuda.is_available()) else "cpu") target_models = [] basecnn = 'baseline.pt' nvidia = 'nvidia.pt' vgg16 = 'vgg16.pt' model1 = BaseCNN() model1.to(device) model1.load_state_dict(torch.load(basecnn)) model1.eval() model2 = Nvidia() model2.to(device) model2.load_state_dict(torch.load(nvidia)) model2.eval() model3 = Vgg16() model3.to(device) model3.load_state_dict(torch.load(vgg16)) model3.eval() target_models.append(('baseline', model1)) # target_models.append(('vgg16', model3)) # target_models.append(('nvidia', model2)) root_dir = '../udacity-data' target = 0.3 attacks = ('FGSM', 'Optimization', 'Optimization Universal', 'AdvGAN', 'AdvGAN Universal') fgsm_result = [] opt_result = [] optu_result = [] advGAN_result = [] advGANU_result = [] fgsm_diff = [] opt_diff = [] optu_diff = [] advGAN_diff = [] advGANU_diff = [] # models = ('baseline') full_indices = list(range(5614)) test_indices = list(np.random.choice(5614, int(0.2*5614), replace=False)) train_indices = list(set(full_indices).difference(set(test_indices))) image_size = (128, 128) # if model_name == 'baseline': # image_size = (128, 128) # elif model_name == 'nvidia': # image_size = (66, 200) # elif model_name == 'vgg16': # image_size = (224, 224) test_composed = transforms.Compose([Rescale((image_size[1],image_size[0])), Preprocess(), ToTensor()]) # train_dataset = UdacityDataset(root_dir, ['HMB1', 'HMB2', 'HMB4'], test_composed, type_='train') full_dataset = UdacityDataset(root_dir, ['testing'], test_composed, type_='test') train_dataset = torch.utils.data.Subset(full_dataset, train_indices) test_dataset = torch.utils.data.Subset(full_dataset, test_indices) for (model_name, model) in target_models: # train_size = int(0.8*len(full_dataset)) # test_size =len(full_dataset) - train_size test_data_loader = torch.utils.data.DataLoader(full_dataset,batch_size=64,shuffle=False) num_sample = len(full_dataset) # universal perturbation generation if not os.path.exists(model_name + '_universal_attack_noise.npy'): print('Start universal attack training') perturbation = generate_noise(train_dataset, model, model_name, device, target) np.save(model_name + '_universal_attack_noise', perturbation) print('Finish universal attack training.') # # advGAN training if not os.path.exists('./models/' + model_name + '_netG_epoch_60.pth'): print('Start advGAN training') advGAN = advGAN_Attack(model_name, model_name + '.pt', target + 0.2, train_dataset) torch.save(advGAN.netG.state_dict(), './models/' + model_name +'_netG_epoch_60.pth') print('Finish advGAN training') # # advGAN_uni training if not os.path.exists('./models/' + model_name + '_universal_netG_epoch_60.pth'): print('Start advGAN_uni training') advGAN_uni = advGAN_Attack(model_name, model_name + '.pt', target + 0.2, train_dataset, universal=True) advGAN_uni.save_noise_seed(model_name + '_noise_seed.npy') torch.save(advGAN_uni.netG.state_dict(), './models/' + model_name +'_universal_netG_epoch_60.pth') print('Finish advGAN_uni training') print("Testing: " + model_name) #fgsm attack fgsm_ast, diff = fgsm_ex(test_data_loader, model, model_name, target, device, num_sample, image_size) print(fgsm_ast) fgsm_result.append(fgsm_ast) fgsm_diff.append(diff) # # optimization attack opt_ast, diff = opt_ex(test_dataset, model, model_name, target, device, num_sample, image_size) print(opt_ast) opt_result.append(opt_ast) opt_diff.append(diff) # optimized-based universal attack optu_ast, diff = opt_uni_ex(test_data_loader, model, model_name, target, device, num_sample, image_size) print(optu_ast) optu_result.append(optu_ast) optu_diff.append(diff) # advGAN attack advGAN_ast, diff = advGAN_ex(test_data_loader, model, model_name, target, device, num_sample, image_size) print(advGAN_ast) advGAN_result.append(advGAN_ast) advGAN_diff.append(diff) # advGAN_universal attack advGANU_ast, diff = advGAN_uni_ex(test_data_loader, model, model_name, target, device, num_sample, image_size) print(advGANU_ast) advGANU_result.append(advGANU_ast) advGANU_diff.append(diff)
def experiment_2(gen=True): device = torch.device("cuda" if (torch.cuda.is_available()) else "cpu") target_models = [] basecnn = 'baseline.pt' nvidia = 'nvidia.pt' vgg16 = 'vgg16.pt' model1 = BaseCNN() model1.to(device) model1.load_state_dict(torch.load(basecnn)) model1.eval() model2 = Nvidia() model2.to(device) model2.load_state_dict(torch.load(nvidia)) model2.eval() model3 = Vgg16() model3.to(device) model3.load_state_dict(torch.load(vgg16)) model3.eval() target_models.append(('baseline', model1)) target_models.append(('nvidia', model2)) target_models.append(('vgg16', model3)) root_dir = '../udacity-data' target = 0.3 models = ('baseline', 'nvidia', 'vgg16') # ex2_fun(target_models[0], target_models[1], device) attacks = ('fgsm_attack', 'opt_attack', 'universal_attack', 'advGAN_attack', 'advGAN_universal_attack') # blackbox test adv image from baseline on nvidia print('No.1') result = ex2_fun(target_models[0], target_models[1], device) # plt_ = ex2_draw(result) # plt_.title('Test ' + target_models[0][0] + ' adv_image on ' + target_models[1][0] + ' model') # plt_.savefig('experiment_result/experiment_2/0-1.jpg') # plt_.close() print('No.2') result = ex2_fun(target_models[0], target_models[2], device) # plt_ = ex2_draw(result) # plt_.title('Test ' + target_models[0][0] + ' adv_image on ' + target_models[2][0] + ' model') # plt_.savefig('experiment_result/experiment_2/0-2.jpg') # plt_.close() print('No.3') result = ex2_fun(target_models[1], target_models[0], device) # plt_ = ex2_draw(result) # plt_.title('Test ' + target_models[1][0] + ' adv_image on ' + target_models[0][0] + ' model') # plt_.savefig('experiment_result/experiment_2/1-0.jpg') # plt_.close() print('No.4') result = ex2_fun(target_models[1], target_models[2], device) # plt_ = ex2_draw(result) # plt_.title('Test ' + target_models[1][0] + ' adv_image on ' + target_models[2][0] + ' model') # plt_.savefig('experiment_result/experiment_2/1-2.jpg') # plt_.close() print('No.5') result = ex2_fun(target_models[2], target_models[0], device) # plt_ = ex2_draw(result) # plt_.title('Test ' + target_models[2][0] + ' adv_image on ' + target_models[0][0] + ' model') # plt_.savefig('experiment_result/experiment_2/2-0.jpg') # plt_.close() print('No.6') result = ex2_fun(target_models[2], target_models[1], device)
def exp1_fig(): model = BaseCNN() model_name = 'baseline' model.load_state_dict(torch.load('baseline.pt')) device = torch.device("cuda" if (torch.cuda.is_available()) else "cpu") model = model.to(device) model.eval() target = 0.3 image = imread( 'F:\\udacity-data\\testing\\center\\1479425441182877835.jpg')[200:, :] image = imresize(image, (128, 128)) image = image / 255. image = torch.from_numpy(image.transpose((2, 0, 1))).unsqueeze(0) image =image.type(torch.FloatTensor) image = image.to(device) output = model(image) print(output) advGAN_generator = Generator(3, 3, model_name).to(device) advGAN_uni_generator = Generator(3, 3, model_name).to(device) # fgsm _, perturbed_image_fgsm, _, adv_output_fgsm, noise_fgsm = fgsm_attack(model, image, target, device) print('fgsm', adv_output_fgsm) perturbed_image_fgsm = perturbed_image_fgsm.squeeze(0).detach().cpu().numpy().transpose(1, 2, 0) noise_fgsm = noise_fgsm.squeeze(0).detach().cpu().numpy().transpose(1, 2, 0) perturbed_image_fgsm = draw(perturbed_image_fgsm, adv_output_fgsm.item(), output.item()) perturbed_image_fgsm = imresize(perturbed_image_fgsm, (128, 128)) # opt perturbed_image_opt, noise_opt, _, adv_output_opt = optimized_attack( model, target, image, device) perturbed_image_opt = perturbed_image_opt.squeeze(0).detach().cpu().numpy().transpose(1, 2, 0) print('opt', adv_output_opt) noise_opt = noise_opt.squeeze(0).detach().cpu().numpy().transpose(1, 2, 0) perturbed_image_opt = draw(perturbed_image_opt, adv_output_opt.item(), output.item()) perturbed_image_opt = imresize(perturbed_image_opt, (128, 128)) # optu noise_optu = np.load(model_name + '_universal_attack_noise.npy') noise_optu = torch.from_numpy(noise_optu).type(torch.FloatTensor).to(device) perturbed_image_optu = image + noise_optu perturbed_image_optu = torch.clamp(perturbed_image_optu, 0, 1) adv_output_optu = model(perturbed_image_optu) print('universal', adv_output_optu) perturbed_image_optu = perturbed_image_optu.squeeze(0).detach().cpu().numpy().transpose(1, 2, 0) noise_optu = noise_optu.squeeze(0).detach().cpu().numpy().transpose(1, 2, 0) perturbed_image_optu = draw(perturbed_image_optu, adv_output_optu.item(), output.item()) perturbed_image_optu = imresize(perturbed_image_optu, (128, 128)) # advGAN advGAN_generator.load_state_dict(torch.load( './models/' + model_name + '_netG_epoch_60.pth')) noise_advGAN = advGAN_generator(image) perturbed_image_advGAN = image + torch.clamp(noise_advGAN, -0.3, 0.3) perturbed_image_advGAN = torch.clamp(perturbed_image_advGAN, 0, 1) adv_output_advGAN = model(perturbed_image_advGAN) print('advGAN', adv_output_advGAN) perturbed_image_advGAN = perturbed_image_advGAN.squeeze(0).detach().cpu().numpy().transpose(1, 2, 0) noise_advGAN = noise_advGAN.squeeze(0).detach().cpu().numpy().transpose(1, 2, 0) perturbed_image_advGAN = draw(perturbed_image_advGAN, adv_output_advGAN.item(), output.item()) perturbed_image_advGAN = imresize(perturbed_image_advGAN, (128, 128)) # advGAN_U advGAN_uni_generator.load_state_dict(torch.load( './models/' + model_name + '_universal_netG_epoch_60.pth')) noise_seed = np.load(model_name + '_noise_seed.npy') noise_advGAN_U = advGAN_uni_generator(torch.from_numpy( noise_seed).type(torch.FloatTensor).to(device)) perturbed_image_advGAN_U = image + torch.clamp(noise_advGAN_U, -0.3, 0.3) perturbed_image_advGAN_U = torch.clamp(perturbed_image_advGAN_U, 0, 1) adv_output_advGAN_U = model(perturbed_image_advGAN_U) print('advGAN_uni', adv_output_advGAN_U) perturbed_image_advGAN_U = perturbed_image_advGAN_U.squeeze(0).detach().cpu().numpy().transpose(1, 2, 0) noise_advGAN_U = noise_advGAN_U.squeeze(0).detach().cpu().numpy().transpose(1, 2, 0) perturbed_image_advGAN_U = draw(perturbed_image_advGAN_U, adv_output_advGAN_U.item(), output.item()) perturbed_image_advGAN_U = imresize(perturbed_image_advGAN_U, (128, 128)) plt.subplot(2,5,1) plt.imshow(perturbed_image_fgsm) # plt.text(0.3, 0.3, 'y: %.4f' % output.item()) plt.xticks([]) plt.yticks([]) plt.subplot(2,5,2) plt.imshow(perturbed_image_opt) plt.xticks([]) plt.yticks([]) plt.subplot(2,5,3) plt.imshow(perturbed_image_optu) plt.xticks([]) plt.yticks([]) plt.subplot(2,5,4) plt.imshow(perturbed_image_advGAN) plt.xticks([]) plt.yticks([]) plt.subplot(2,5,5) plt.imshow(perturbed_image_advGAN_U) plt.xticks([]) plt.yticks([]) plt.subplot(2,5,6) plt.imshow(np.clip(noise_fgsm*5,0,1)) plt.xticks([]) plt.yticks([]) plt.subplot(2,5,7) plt.imshow(np.clip(noise_opt*5,0,1)) plt.xticks([]) plt.yticks([]) plt.subplot(2,5,8) plt.imshow(np.clip(noise_optu*5,0,1)) plt.xticks([]) plt.yticks([]) plt.subplot(2,5,9) plt.imshow(np.clip(noise_advGAN*5,0,1)) plt.xticks([]) plt.yticks([]) plt.subplot(2,5,10) plt.imshow(np.clip(noise_advGAN_U*5,0,1)) plt.xticks([]) plt.yticks([]) plt.tight_layout(pad=0.5, w_pad=0, h_pad=0) plt.show()
def optu_test(model, image, noise, device): perturbed_image_optu = image + noise perturbed_image_optu = torch.clamp(perturbed_image_optu, 0, 1) adv_output_optu = model(perturbed_image_optu) perturbed_image_optu = perturbed_image_optu.squeeze( 0).detach().cpu().numpy().transpose(1, 2, 0) if __name__ == "__main__": model = BaseCNN() model_name = 'baseline' model.load_state_dict(torch.load('baseline.pt')) device = torch.device("cuda" if (torch.cuda.is_available()) else "cpu") model = model.to(device) model.eval() target = 0.3 # image = imread( # '/media/dylan/Program/cg23-dataset/testing/center/1479425441182877835.jpg')[200:, :] # image = imresize(image, (128, 128)) # image = image / 255. # image = torch.from_numpy(image.transpose((2, 0, 1))).unsqueeze(0) # image =image.type(torch.FloatTensor) # image = image.to(device) # output = model(image) # fgsm # opt
# elif model_name == "nvidia": # resized_image_height = 66 # resized_image_width = 200 image_size = (resized_image_width, resized_image_height) dataset_path = args.root_dir device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # print(device) if model_name == 'baseline': net = BaseCNN() elif model_name == 'nvidia': net = Nvidia() elif model_name == 'vgg16': net = Vgg16() net.apply(weight_init) net = net.to(device) # net.to(device) if train != 0: if train == 2: net.load_state_dict(torch.load(model_name + '.pt')) composed = transforms.Compose([ Rescale(image_size), RandFlip(), RandRotation(), Preprocess(model_name), ToTensor() ]) dataset = UdacityDataset(dataset_path, ['HMB1', 'HMB2', 'HMB4', 'HMB5', 'HMB6'], composed)
[Rescale((128, 128)), Preprocess('baseline'), ToTensor()]) full_dataset = UdacityDataset(root_dir, ['testing'], test_composed, type_='test') train_size = int(0.8 * len(full_dataset)) test_size = len(full_dataset) - train_size train_dataset, test_dataset = torch.utils.data.random_split( full_dataset, [train_size, test_size]) device = torch.device("cuda" if (torch.cuda.is_available()) else "cpu") dataloader = torch.utils.data.DataLoader(train_dataset, 1, True) model = BaseCNN() model.to(device) model.load_state_dict(torch.load(target_model)) model.eval() perturbation = universal_attack(dataloader, model, device, target, 0.3) np.save('universal_attack_noise.npy', perturbation.detach().cpu().numpy()) # i = 0 # test_dataloader = torch.utils.data.DataLoader(test_dataset,1,True) # for _, data in enumerate(test_dataloader): # image = data['image'] # perturbed_image = image + perturbation # image =image.type(torch.FloatTensor) # perturbed_image = perturbed_image.type(torch.FloatTensor) # image = image.to(device) # perturbed_image = perturbed_image.to(device) # y_pred = model(image)
def test_on_gen(net, model_name, dataset_path, attack, device): original_net = None if model_name == 'baseline': original_net = BaseCNN() elif model_name == 'nvidia': original_net = Nvidia() elif model_name == 'vgg16': original_net = build_vgg16(False) original_net.load_state_dict(torch.load(model_name + '.pt')) original_net = original_net.to(device) original_net.eval() test_y = pd.read_csv('ch2_final_eval.csv')['steering_angle'].values test_composed = transforms.Compose( [Rescale(image_size), Preprocess('baseline'), ToTensor()]) test_dataset = UdacityDataset(dataset_path, ['testing'], test_composed, 'test') test_generator = DataLoader(test_dataset, batch_size=1, shuffle=False) with torch.no_grad(): # test on original dataset yhat = [] y_original = [] # test_y = [] for _, sample_batched in enumerate(test_generator): batch_x = sample_batched['image'] batch_y = sample_batched['steer'] batch_x = batch_x.type(torch.FloatTensor) batch_y = batch_y.type(torch.FloatTensor) batch_x = batch_x.to(device) batch_y = batch_y.to(device) output = net(batch_x) output_ori = original_net(batch_x) # print(output.item(), batch_y.item()) yhat.append(output.item()) y_original.append(output_ori.item()) yhat = np.array(yhat) y_original = np.array(y_original) rmse = np.sqrt(np.mean((yhat - test_y)**2)) rmse_ori = np.sqrt(np.mean((y_original - test_y)**2)) print('adv model on ori dataset:', rmse, 'ori model on ori dataset: ', rmse_ori) plt.figure(figsize=(32, 8)) plt.plot(test_y, 'r.-', label='target') plt.plot(yhat, 'b^-', label='predict') plt.legend(loc='best') plt.title("RMSE: %.2f" % rmse) # plt.show() model_fullname = "%s_%d.png" % (model_name + '_' + attack, int(time.time())) plt.savefig(model_fullname) test_generator = DataLoader(test_dataset, batch_size=64, shuffle=False) target = 0.3 # test adv_training model on adv images generated based on itself # ast_ori, _ = fgsm_ex(test_generator, original_net, 'baseline', target, device, len(test_dataset)) # ast_dist,_ = fgsm_ex(test_generator, net, 'baseline', target, device, len(test_dataset)) # print(ast_ori, ast_dist) success = 0 success_ = 0 # test adv_training model on adv images generated based on original model for _, sample_batched in enumerate(test_generator): batch_x = sample_batched['image'] batch_x = batch_x.type(torch.FloatTensor) batch_x = batch_x.to(device) y_pred = net(batch_x) y_pred_ori = original_net(batch_x) # fgsm_attack adv_x = fgsm_attack_(original_net, batch_x, target, device) y_fgsm = net(adv_x) y_ori_fgsm = original_net(adv_x) diff = abs(y_fgsm - y_pred) success += len(diff[diff >= abs(target)]) diff = abs(y_ori_fgsm - y_pred_ori) success_ += len(diff[diff >= abs(target)]) print('fgsm', success / len(test_dataset), success_ / len(test_dataset)) # opt attack # success = 0 # success_ = 0 # for _,sample_batched in enumerate(test_dataset): # batch_x = sample_batched['image'] # batch_x = batch_x.type(torch.FloatTensor) # batch_x = batch_x.unsqueeze(0) # batch_x = batch_x.to(device) # y_pred = net(batch_x) # y_pred_ori = original_net(batch_x) # # fgsm_attack # # adv_x = fgsm_attack_(original_net, batch_x, target, device) # adv_x,_,_,_ = optimized_attack(original_net, target, batch_x) # y_fgsm = net(adv_x) # y_ori_fgsm = original_net(adv_x) # diff = abs(y_fgsm - y_pred) # success += len(diff[diff >= abs(target)]) # diff = abs(y_ori_fgsm - y_pred_ori) # success_ += len(diff[diff >= abs(target)]) # print('opt', success / len(test_dataset), success_ / len(test_dataset)) # opt universal attack noise_u = np.load(model_name + '_universal_attack_noise.npy') noise_u = torch.from_numpy(noise_u).type(torch.FloatTensor).to(device) success = 0 success_ = 0 for _, sample_batched in enumerate(test_generator): batch_x = sample_batched['image'] batch_x = batch_x.type(torch.FloatTensor) batch_x = batch_x.to(device) y_pred = net(batch_x) y_pred_ori = original_net(batch_x) # adv_x = fgsm_attack_(original_net, batch_x, target, device) # noise = advGAN_generator(batch_x) perturbed_image = batch_x + noise_u adv_x = torch.clamp(perturbed_image, 0, 1) y_fgsm = net(adv_x) y_ori_fgsm = original_net(adv_x) diff = abs(y_fgsm - y_pred) success += len(diff[diff >= abs(target)]) diff = abs(y_ori_fgsm - y_pred_ori) success_ += len(diff[diff >= abs(target)]) print('opt uni', success / len(test_dataset), success_ / len(test_dataset)) # test for advGAN attack success = 0 success_ = 0 advGAN_generator = Generator(3, 3, model_name).to(device) advGAN_generator.load_state_dict( torch.load('./models/' + model_name + '_netG_epoch_60.pth')) for _, sample_batched in enumerate(test_generator): batch_x = sample_batched['image'] batch_x = batch_x.type(torch.FloatTensor) batch_x = batch_x.to(device) y_pred = net(batch_x) y_pred_ori = original_net(batch_x) # adv_x = fgsm_attack_(original_net, batch_x, target, device) noise = advGAN_generator(batch_x) perturbed_image = batch_x + torch.clamp(noise, -0.3, 0.3) adv_x = torch.clamp(perturbed_image, 0, 1) y_fgsm = net(adv_x) y_ori_fgsm = original_net(adv_x) diff = abs(y_fgsm - y_pred) success += len(diff[diff >= abs(target)]) diff = abs(y_ori_fgsm - y_pred_ori) success_ += len(diff[diff >= abs(target)]) print('advGAN', success / len(test_dataset), success_ / len(test_dataset)) # test for advGAN uni attack advGAN_uni_generator = Generator(3, 3, model_name).to(device) advGAN_uni_generator.load_state_dict( torch.load('./models/' + model_name + '_universal_netG_epoch_60.pth')) noise_seed = np.load(model_name + '_noise_seed.npy') noise_a = advGAN_uni_generator( torch.from_numpy(noise_seed).type(torch.FloatTensor).to(device)) success = 0 success_ = 0 for _, sample_batched in enumerate(test_generator): batch_x = sample_batched['image'] batch_x = batch_x.type(torch.FloatTensor) batch_x = batch_x.to(device) y_pred = net(batch_x) y_pred_ori = original_net(batch_x) # adv_x = fgsm_attack_(original_net, batch_x, target, device) # noise = advGAN_generator(batch_x) perturbed_image = batch_x + torch.clamp(noise_a, -0.3, 0.3) adv_x = torch.clamp(perturbed_image, 0, 1) y_fgsm = net(adv_x) y_ori_fgsm = original_net(adv_x) diff = abs(y_fgsm - y_pred) success += len(diff[diff >= abs(target)]) diff = abs(y_ori_fgsm - y_pred_ori) success_ += len(diff[diff >= abs(target)]) print('advGAN uni', success / len(test_dataset), success_ / len(test_dataset))