Example #1
0
                    help='number of frames in an animation for the gif')

opt = parser.parse_args()
print(opt)

mnist = MNIST()

mnist_train = mnist.train_loader

if opt.cuda:
    cuda_gpu = torch.device('cuda:0')
    cppn = CPPN(x_dim=opt.x_dim,
                y_dim=opt.y_dim,
                scale=opt.scale,
                cuda_device=cuda_gpu)
    cppn.cuda()
    cppn.load_state_dict(torch.load(opt.model))
else:
    cppn = CPPN(x_dim=opt.x_dim, y_dim=opt.y_dim, scale=opt.scale)
    cppn.load_state_dict(torch.load(opt.model, map_location='cpu'))

cppn.eval()

enc = []
lab = []
for idx, (im, label) in enumerate(mnist_train):
    with torch.no_grad():
        if opt.cuda:
            im = im.cuda()
        mean, logvar = cppn.encoder(im)
        encoding = cppn.reparametrize(mean, logvar)
Example #2
0
                    help='number of cpu threads to use during\
 batch generation')

opt = parser.parse_args()

print(opt)

mnist = MNIST()

train_mnist = mnist.train_loader
test = mnist.test_loader

if opt.cuda:
    cuda_gpu = torch.device('cuda:0')
    model = CPPN(cuda_device=cuda_gpu)
    model.cuda()
else:
    model = CPPN()

le = 0
ld = 0
lg = 0

indices_train = np.arange(60000)

model.train()
for epoch in range(opt.n_epochs):
    print("STARTING EPOCH {}".format(epoch))
    for idx, (im, _) in enumerate(train_mnist):
        model.optimizer_discriminator.zero_grad()
        model.optimizer_encoder.zero_grad()