Example #1
0
def main(_):
    pp.pprint(flags.FLAGS.__flags)

    if FLAGS.output_width is None:
        FLAGS.output_width = FLAGS.output_height

    assert (os.path.exists(FLAGS.checkpoint_dir))

    run_config = tf.ConfigProto()
    run_config.gpu_options.allow_growth = True

    with tf.Session(config=run_config) as sess:
        dcgan = DCGAN(sess,
                      output_width=FLAGS.output_width,
                      output_height=FLAGS.output_height,
                      batch_size=FLAGS.batch_size,
                      dataset_name=FLAGS.dataset,
                      checkpoint_dir=FLAGS.checkpoint_dir,
                      lam=FLAGS.lam)
        #dcgan.load(FLAGS.checkpoint_dir):
        dcgan.complete(FLAGS)

        show_all_variables()

        # to_json("./web/js/layers.js", [dcgan.h0_w, dcgan.h0_b, dcgan.g_bn0],
        #                 [dcgan.h1_w, dcgan.h1_b, dcgan.g_bn1],
        #                 [dcgan.h2_w, dcgan.h2_b, dcgan.g_bn2],
        #                 [dcgan.h3_w, dcgan.h3_b, dcgan.g_bn3],
        #                 [dcgan.h4_w, dcgan.h4_b, None])

        # Below is codes for visualization
        OPTION = 1
        visualize(sess, dcgan, FLAGS, OPTION)
Example #2
0
def main(_):
  pp.pprint(flags.FLAGS.__flags)
  
  if FLAGS.input_width is None:
    FLAGS.input_width = FLAGS.input_height
  if FLAGS.output_width is None:
    FLAGS.output_width = FLAGS.output_height

  if not os.path.exists(FLAGS.checkpoint_dir):
    os.makedirs(FLAGS.checkpoint_dir)
  if not os.path.exists(FLAGS.sample_dir):
    os.makedirs(FLAGS.sample_dir)

  #gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
  run_config = tf.ConfigProto()
  run_config.gpu_options.allow_growth=True
  
  with tf.Session(config=run_config) as sess:
      dcgan = DCGAN(
          sess,
          input_width=FLAGS.input_width,
          input_height=FLAGS.input_height,
          output_width=FLAGS.output_width,
          output_height=FLAGS.output_height,
          batch_size=FLAGS.batch_size,
          sample_num=FLAGS.batch_size,
          dataset_name=FLAGS.dataset,
          input_fname_pattern=FLAGS.input_fname_pattern,
          crop=FLAGS.crop,
          checkpoint_dir=FLAGS.checkpoint_dir,
          sample_dir=FLAGS.sample_dir)

  print('Will try to complete images...')
  dcgan.complete()
  print('Done!')      
Example #3
0
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--beta1', type=float, default=0.9)
parser.add_argument('--beta2', type=float, default=0.999)
parser.add_argument('--eps', type=float, default=1e-8)
parser.add_argument('--hmcBeta', type=float, default=0.2)
parser.add_argument('--hmcEps', type=float, default=0.001)
parser.add_argument('--hmcL', type=int, default=100)
parser.add_argument('--nIter', type=int, default=1000)
parser.add_argument('--imgSize', type=int, default=64)
parser.add_argument('--lam', type=float, default=0.1)
parser.add_argument('--checkpointDir', type=str, default='checkpoint')
parser.add_argument('--outDir', type=str, default='completions')
parser.add_argument('--outInterval', type=int, default=50)
parser.add_argument('--maskType', type=str,
                    choices=['random', 'center', 'left', 'full', 'grid', 'lowres'],
                    default='center')
parser.add_argument('--centerScale', type=float, default=0.25)
parser.add_argument('imgs', type=str, nargs='+')

args = parser.parse_args()

assert(os.path.exists(args.checkpointDir))

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
    dcgan = DCGAN(sess, image_size=args.imgSize,
                  batch_size=(1 if args.approach == 'hmc' else 64),
                  checkpoint_dir=args.checkpointDir, lam=args.lam)
    dcgan.complete(args)
parser.add_argument('--beta1', type=float, default=0.9)
parser.add_argument('--beta2', type=float, default=0.999)
parser.add_argument('--eps', type=float, default=1e-8)
parser.add_argument('--hmcBeta', type=float, default=0.2)
parser.add_argument('--hmcEps', type=float, default=0.001)
parser.add_argument('--hmcL', type=int, default=100)
parser.add_argument('--hmcAnneal', type=float, default=1)
parser.add_argument('--nIter', type=int, default=1000)
parser.add_argument('--imgSize', type=int, default=64)
parser.add_argument('--lam', type=float, default=0.1)
parser.add_argument('--checkpointDir', type=str, default='checkpoint')
parser.add_argument('--outDir', type=str, default='completions')
parser.add_argument('--outInterval', type=int, default=50)
parser.add_argument('--maskType', type=str,
                    choices=['random', 'center', 'left', 'full', 'grid', 'lowres'],
                    default='center')
parser.add_argument('--centerScale', type=float, default=0.25)
parser.add_argument('imgs', type=str, nargs='+')

args = parser.parse_args()

assert(os.path.exists(args.checkpointDir))

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
    dcgan = DCGAN(sess, image_size=args.imgSize,
                  batch_size=min(64, len(args.imgs)),
                  checkpoint_dir=args.checkpointDir, lam=args.lam)
    dcgan.complete(args)
Example #5
0
def main(_):
    pp.pprint(flags.FLAGS.__flags)

    if not os.path.exists(FLAGS.checkpoint_dir):
        os.makedirs(FLAGS.checkpoint_dir)
    if not os.path.exists(FLAGS.sample_dir):
        os.makedirs(FLAGS.sample_dir)

    # Do not take all memory
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.80)
    # sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
        # w/ y label
        if FLAGS.dataset == 'mnist':
            dcgan = DCGAN(sess,
                          image_size=FLAGS.image_size,
                          batch_size=FLAGS.batch_size,
                          y_dim=10,
                          output_size=28,
                          c_dim=1,
                          dataset_name=FLAGS.dataset,
                          is_crop=FLAGS.is_crop,
                          checkpoint_dir=FLAGS.checkpoint_dir)
        # w/o y label
        else:
            if FLAGS.dataset == 'cityscapes':
                print 'Select CITYSCAPES'
                mask_dir = CITYSCAPES_mask_dir
                FLAGS.output_size_h, FLAGS.output_size_w, FLAGS.is_crop = 192, 512, False
                FLAGS.dataset_dir = CITYSCAPES_dir
            elif FLAGS.dataset == 'inria':
                print 'Select INRIAPerson'
                FLAGS.output_size_h, FLAGS.output_size_w, FLAGS.is_crop = 160, 96, False
                FLAGS.dataset_dir = INRIA_dir
            elif FLAGS.dataset == 'indoor':
                print 'Select indoor'
                FLAGS.output_size_h, FLAGS.output_size_w, FLAGS.is_crop = 256, 256, False
                FLAGS.dataset_dir = indoor_dir
            elif FLAGS.dataset == 'indoor_bedroom':
                print 'Select indoor bedroom'
                FLAGS.output_size_h, FLAGS.output_size_w, FLAGS.is_crop = 256, 256, False
                FLAGS.dataset_dir = indoor_bedroom_dir
            elif FLAGS.dataset == 'indoor_dining':
                print 'Select indoor dining'
                FLAGS.output_size_h, FLAGS.output_size_w, FLAGS.is_crop = 256, 256, False
                FLAGS.dataset_dir = indoor_bedroom_dir

            dcgan = DCGAN(sess,
                          batch_size=FLAGS.batch_size,
                          output_size_h=FLAGS.output_size_h,
                          output_size_w=FLAGS.output_size_w,
                          c_dim=FLAGS.c_dim,
                          dataset_name=FLAGS.dataset,
                          is_crop=FLAGS.is_crop,
                          checkpoint_dir=FLAGS.checkpoint_dir,
                          dataset_dir=FLAGS.dataset_dir)

        if FLAGS.mode == 'test':
            print('Testing!')
            dcgan.test(FLAGS)
        elif FLAGS.mode == 'train':
            print('Train!')
            dcgan.train(FLAGS)
        elif FLAGS.mode == 'complete':
            print('Complete!')
            dcgan.complete(FLAGS, mask_dir)
Example #6
0
                            'random', 'center', 'left', 'full', 'grid',
                            'lowres', 'parameters', 'wfc3'
                        ],
                        default='parameters')
    parser.add_argument('--input_spectrum',
                        type=str,
                        default='./input_spectrum.dat')
    parser.add_argument('--centerScale', type=float, default=0.25)
    parser.add_argument('--make_corner', type=bool, default=False)
    parser.add_argument('--spectra_int_norm', type=bool, default=False)
    parser.add_argument('--spectra_norm', type=bool, default=False)
    parser.add_argument('--spectra_real_norm', type=bool, default=True)

    args = parser.parse_args()
    assert (os.path.exists(args.checkpointDir))
    tf.reset_default_graph()
    config = tf.ConfigProto(log_device_placement=True)
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)

    spectrum = args.input_spectrum

    dcgan = DCGAN(sess,
                  image_size=args.imgSize,
                  z_dim=100,
                  batch_size=64,
                  checkpoint_dir=args.checkpointDir,
                  c_dim=1,
                  lam=args.lam)
    dcgan.complete(args, spectrum)
Example #7
0
    parser.add_argument('--nIter', type=int, default=1001)
    parser.add_argument('--imgSize', type=int, default=33)
    parser.add_argument('--lam', type=float, default=0.1)
    parser.add_argument('--checkpointDir', type=str, default='checkpoint_test')
    parser.add_argument('--outDir', type=str, default='exogan_output')
    parser.add_argument('--outInterval', type=int, default=50)
    parser.add_argument('--maskType', type=str,
                        choices=['random', 'center', 'left', 'full', 
                                 'grid', 'lowres', 'parameters', 'wfc3'],
                        default='parameters')
    parser.add_argument('--centerScale', type=float, default=0.25)
    parser.add_argument('--make_corner', type=bool, default=False)
    parser.add_argument('--spectra_int_norm', type=bool, default=False)
    parser.add_argument('--spectra_norm', type=bool, default=False)
    parser.add_argument('--spectra_real_norm', type=bool, default=True)
    
    args = parser.parse_args()
    assert(os.path.exists(args.checkpointDir))
    tf.reset_default_graph()
    config = tf.ConfigProto(log_device_placement=True)
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)
    dcgan = DCGAN(sess, 
                  image_size=args.imgSize,
                  z_dim=100,
                  batch_size=64,
                  checkpoint_dir=args.checkpointDir, 
                  c_dim=1,
                  lam=args.lam)
    dcgan.complete(args, spectrum[0], sigma=0.0)
Example #8
0
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
    dcgan = DCGAN(sess,
                  image_size=args.imgSize,
                  batch_size=min(64, len(args.imgs)),
                  checkpoint_dir=args.checkpointDir,
                  lam=args.lam)
    img1 = cv2.imread("C:/Users/engab/Desktop/PROJECT/CRW_4901_JFRtamp37.jpg",
                      cv2.IMREAD_COLOR)
    points, positions = sift.all_experiments(img1)

    while True:

        dcgan.complete(args, points, positions, 110,
                       175)  #put the starting coordinates of the object
        output = cv2.imread(
            "C:/Users/engab/Desktop/PROJECT/tensorflow dcgan inpainting/DSC_1535tamp1.jpg",
            cv2.IMREAD_COLOR)  #inpainted image path
        img1[175:239, 110:174] = output
        points, positions = sift.all_experiments(img1)
        #your code here,put image number 950 in the loop folder
        parser.set_defaults(
            imgs=
            "C:/Users\\engab\\Desktop\\PROJECT\\tensorflow dcgan inpainting\\data\\loop"
        )  #inpainted image path
        args = parser.parse_args()
        if points < 4:
            break