Example #1
0
                targetEmbedDim,
                hiddenDim,
                corpus.targetVoc.size(),
                useSmallSoftmax=useSmallSoftmax,
                dropoutRate=dropoutRate,
                numLayers=numLayers)

if useSmallSoftmax:
    vocGen = VocGenerator(vocGenHiddenDim, corpus.targetVoc.size(),
                          corpus.sourceVoc.size())
    vocGen.load_state_dict(torch.load(vocGenFile))
    vocGen.cuda()
    vocGen.eval()

encdec.softmaxLayer.weight.weight = embedding.targetEmbedding.weight
'''
# how to load NMT model parameters
all_state_dict = torch.load(nmtFile)
embedding_state_dict = {}
encdec_state_dict = {}
for s in all_state_dict:
    if 'Embedding' in s:
        embedding_state_dict[s] = all_state_dict[s]
    else:
        encdec_state_dict[s] = all_state_dict[s]
embedding.load_state_dict(embedding_state_dict)
encdec.load_state_dict(encdec_state_dict)
'''

embedding.cuda()
encdec.cuda()
Example #2
0
                    stateDict[elem] = stateDict[elem].to(cpu)
                torch.save(stateDict, './params/embedding.bin')

                stateDict = encdec.state_dict()
                for elem in stateDict:
                    stateDict[elem] = stateDict[elem].to(cpu)
                torch.save(stateDict, './params/encdec.bin')

            prevDevGleu = devGleu

if train:
    exit(0)

torch.set_grad_enabled(False)

embedding.load_state_dict(torch.load('./params/embedding.bin'))
encdec.load_state_dict(torch.load('./params/encdec.bin'))

embedding.to(device)
encdec.to(device)

embedding.eval()
encdec.eval()

f_trans = open('./trans.txt', 'w')
f_gold = open('./gold.txt', 'w')

devPerp = 0.0
totalTokenCount = 0.0

for batch in batchListDev:
Example #3
0
    if os.path.exists(wordParamsFile):
        embedding.wordEmbedding.load_state_dict(torch.load(wordParamsFile))
    else:
        utils.loadEmbeddings(embedding.wordEmbedding, corpus.voc,
                             wordEmbeddingFile)
        torch.save(embedding.wordEmbedding.state_dict(), wordParamsFile)

    if os.path.exists(charParamsFile):
        embedding.charEmbedding.load_state_dict(torch.load(charParamsFile))
    else:
        utils.loadEmbeddings(embedding.charEmbedding, corpus.charVoc,
                             charEmbeddingFile)
        torch.save(embedding.charEmbedding.state_dict(), charParamsFile)
if test:
    tagger.load_state_dict(torch.load(taggerParamsFile))
    embedding.load_state_dict(torch.load(embeddingParamsFile))

if useGpu:
    if torch.cuda.is_available():
        torch.cuda.set_device(args.gpuId)
        torch.cuda.manual_seed(seed)
        embedding.cuda()
        tagger.cuda()
        print('**** Running with GPU-' + str(args.gpuId) + ' ****\n')
    else:
        useGpu = False
        print('**** Warning: GPU is not available ****\n')

criterionTagger = nn.CrossEntropyLoss(size_average=False, ignore_index=-1)

batchListTrain = utils.buildBatchList(len(corpus.trainData), batchSize)
Example #4
0
    vocGen.cuda()
    vocGen.eval()

encdec.softmaxLayer.weight.weight = embedding.targetEmbedding.weight

# how to load NMT model parameters
if os.path.exists(nmtFile):
    all_state_dict = torch.load(nmtFile)
    embedding_state_dict = {}
    encdec_state_dict = {}
    for s in all_state_dict:
        if 'Embedding' in s:
            embedding_state_dict[s] = all_state_dict[s]
        else:
            encdec_state_dict[s] = all_state_dict[s]
    embedding.load_state_dict(embedding_state_dict)
    encdec.load_state_dict(encdec_state_dict)
else:
    print('****** No pre-trained model found --> training from scratch ******')

embedding.cuda()
encdec.cuda()
bse.cuda()

batchListTrain = utils.buildBatchList(len(corpus.trainData), batchSize)
batchListDev = utils.buildBatchList(len(corpus.devData), batchSize)

withoutWeightDecay = []
withWeightDecay = []
for name, param in list(embedding.named_parameters()) + list(
        encdec.named_parameters()):
Example #5
0
    }))
lstm = LSTM(
    Config({
        'input_size': word_embed.output_size + char_cnn.output_size,
        'hidden_size': train_args['lstm_hidden_size'],
        'forget_bias': 1.0,
        'batch_first': True,
        'bidirectional': True
    }))
crf = CRF(Config({'label_vocab': label_vocab}))
output_linear = Linear(
    Config({
        'in_features': lstm.output_size,
        'out_features': len(label_vocab)
    }))
word_embed.load_state_dict(state['model']['word_embed'])
char_cnn.load_state_dict(state['model']['char_cnn'])
char_highway.load_state_dict(state['model']['char_highway'])
lstm.load_state_dict(state['model']['lstm'])
crf.load_state_dict(state['model']['crf'])
output_linear.load_state_dict(state['model']['output_linear'])
lstm_crf = LstmCrf(token_vocab=token_vocab,
                   label_vocab=label_vocab,
                   char_vocab=char_vocab,
                   word_embedding=word_embed,
                   char_embedding=char_cnn,
                   crf=crf,
                   lstm=lstm,
                   univ_fc_layer=output_linear,
                   embed_dropout_prob=train_args['embed_dropout'],
                   lstm_dropout_prob=train_args['lstm_dropout'],