def __show_house(self): house = HouseModel() for house in self.__controller.list_houses: # print(f"{house.title}的房源编号是{house.id}社区是{house.community}" # f"楼龄是{house.years}房屋类型是{house.house_type}房屋面积是{house.area}" # f"楼层是{house.floor}描述是{house.description}总价是{house.total_price}" # f"单价是{house.unit_price}关注{house.follow_info}") print(house.__dict__)
def __string_to_HouseModel(line): return HouseModel(int(line[0]), line[1], line[2], line[3], line[4], float(line[5]), line[6], line[7], float(line[8]), float(line[9]), line[10])
from model import HouseModel import pandas as pd import numpy as np #train model house_model = HouseModel("single_family_home_values.csv") #!!!!!!!!!!!!!!!!!!!!!!! PUT THE RESERVE DATASET IN test.csv !!!!!!!!!!! reserve = HouseModel.preprocess("test.csv").values #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! features = reserve[:,0:-1] labels = reserve[:,-1] # last column is labels/targets print "\n***** TEST ERROR STATS ********" residuals = pd.Series(house_model.residuals(features,labels)) mean_diff = np.mean(residuals) p_mean_diff = np.mean(mean_diff/np.exp(labels)) print "R^2:\t %0.5f" % house_model.score(features,labels) print "%%Err:\t %0.5f%%" % (p_mean_diff*100) print residuals.describe() print "***** TEST ERROR STATS ********"
def __init__(self): self.__list_houses = HouseDao.load() self.model = HouseModel()