Example #1
0
def main(config):
    device = torch.device('cpu') if config.gpu_id < 0 else torch.device(
        'cuda:%d' % config.gpu_id)

    x, y = load_mnist(is_train=True)
    x = x.view(x.size(0), -1)

    train_cnt = int(x.size(0) * config.train_rate)
    valid_cnt = x.size(0) - train_cnt

    indices = torch.randperm(x.size(0))
    x = torch.index_select(x, dim=0, index=indices).to(device).split(
        [train_cnt, valid_cnt], dim=0)

    print("Train:", x[0].shape, y[0].shape)
    print("Valid:", x[1].shape, y[1].shape)

    model = ImageClassifier(28**2, 10).to(device)
    optimizer = optim.Adam(model.parameters())
    crit = nn.CrossEntropyLoss()

    trainer = Trainer(model, optimizer, crit)

    trainer.train((x[0], y[0]), (x[1], y[1]), config)

    torch.save({
        'model': trainer.model.state_dict(),
        'config': config,
    }, config.model_fn)
Example #2
0
def main(config):
    # Set device based on user defined configuration.
    device = torch.device('cpu') if config.gpu_id < 0 else torch.device(
        'cuda:%d' % config.gpu_id)

    x, y = load_mnist(is_train=True)
    # Reshape tensor to chunk of 1-d vectors.
    x = x.view(x.size(0), -1)

    train_cnt = int(x.size(0) * config.train_ratio)
    valid_cnt = x.size(0) - train_cnt

    # Shuffle dataset to split into train/valid set.
    indices = torch.randperm(x.size(0))
    x = torch.index_select(x, dim=0, index=indices).to(device).split(
        [train_cnt, valid_cnt], dim=0)

    y = torch.index_select(y, dim=0, index=indices).to(device).split(
        [train_cnt, valid_cnt], dim=0)

    print("Train:", x[0].shape, y[0].shape)
    print("Valid:", x[1].shape, y[1].shape)

    model = ImageClassifier(28**2, 10).to(device)
    optimizer = optim.Adam(model.parameters())
    crit = nn.NLLLoss()

    trainer = Trainer(model, optimizer, crit)
    trainer.train((x[0], y[0]), (x[1], y[1]), config)

    # Save best model weights.
    torch.save({
        'model': trainer.model.state_dict(),
        'config': config
    }, config.model_fn)
Example #3
0
def main(config):
    device = torch.device('cpu') if config.gpu_id < 0 else torch.device('cuda:%d' % config.gpu_id)

    train_loader, valid_loader, test_loader = get_loaders(config)

    print("Train:", len(train_loader.dataset))
    print("Valid:", len(valid_loader.dataset))
    print("Test:", len(test_loader.dataset))

    model = ImageClassifier(28**2, 10).to(device)
    optimizer = optim.Adam(model.parameters())
    crit = nn.CrossEntropyLoss()

    trainer = Trainer(config)
    trainer.train(model, crit, optimizer, train_loader, valid_loader)
Example #4
0
def main(config):
    device = torch.device('cpu') if config.gpu_id < 0 else torch.device(
        'cuda : %d' % config.gpu_id)

    train_loader, valid_loader, test_loader = get_loaders(config)
    # get_loader를 통해 데이터를 받아옴

    print('Train', len(train_loader.dataset))
    print('Valid', len(valid_loader.dataset))
    print('Test', len(test_loader.dataset))

    model = ImageClassifier(28**2,
                            10).to(device)  # input = (784)이고 10개의 클래스로 분류할 것
    optimizer = optim.Adam(model.parameters())
    crit = nn.CrossEntropyLoss()  # Loss Function

    trainer = Trainer(config)
    trainer.train(model, crit, optimizer, train_loader, valid_loader)
def main(config):
    # Set device based on user defined configuration.
    device = torch.device('cpu') if config.gpu_id < 0 else torch.device('cuda:%d' % config.gpu_id)

    x, y = load_mnist(is_train=True, flatten=True)
    x, y = split_data(x.to(device), y.to(device), train_ratio=config.train_ratio)

    print("Train:", x[0].shape, y[0].shape)
    print("Valid:", x[1].shape, y[1].shape)

    input_size = int(x[0].shape[-1])
    output_size = int(max(y[0])) + 1

    model = ImageClassifier(
        input_size=input_size,
        output_size=output_size,
        hidden_sizes=get_hidden_sizes(input_size,
                                      output_size,
                                      config.n_layers),
        use_batch_norm=not config.use_dropout,
        dropout_p=config.dropout_p,
    ).to(device)
    optimizer = optim.Adam(model.parameters())
    crit = nn.NLLLoss()

    if config.verbose >= 1:
        print(model)
        print(optimizer)
        print(crit)

    trainer = Trainer(model, optimizer, crit)

    trainer.train(
        train_data=(x[0], y[0]),
        valid_data=(x[1], y[1]),
        config=config
    )

    # Save best model weights.
    torch.save({
        'model': trainer.model.state_dict(),
        'opt': optimizer.state_dict(),
        'config': config,
    }, config.model_fn)
Example #6
0
def main(config):
    # Set device based on user defined configuration.
    device = torch.device('cpu') if config.gpu_id < 0 else torch.device(
        'cuda:%d' % config.gpu_id)

    train_loader, valid_loader, test_loader = get_loaders(config)

    print("Train:", len(train_loader.dataset))
    print("Valid:", len(valid_loader.dataset))
    print("Test:", len(test_loader.dataset))

    model = ImageClassifier(28**2, 10).to(
        device)  # 입력은 784, 10개 클래스로 분류, GPU면 여기로 옮겨줘?
    optimizer = optim.Adam(model.parameters(
    ))  # model.parameters() 하면 모델 내 웨이트 파라미터들이 이터레이티브하게 나온다
    crit = nn.CrossEntropyLoss()  # 분류를 해야하기 때문에 교차엔트로피 쓴다, 모델에서 소프트맥스로 끝나는 이유

    trainer = Trainer(config)  # 이그나이트를 써서 짜놓은 메서드
    trainer.train(model, crit, optimizer, train_loader, valid_loader)
Example #7
0
def main(config):
    # 연산 디바이스 설정
    if config.gpu_id < 0:
        print("Device: CPU")
        device = torch.device('cpu')
    else:
        print("Device:", torch.cuda.get_device_name(0))
        device = torch.device('cuda:%d' % config.gpu_id)

    # 입력값에 따라 학습, 검증 데이터 분할
    x, y = load_mnist(is_train=True, flatten=True)
    train_cnt = int(x.size(0) * config.train_ratio)
    valid_cnt = x.size(0) - train_cnt

    # 각 데이터셋 셔플링
    indices = torch.randperm(x.size(0))
    x = torch.index_select(x, dim=0, index=indices).to(device).split(
        [train_cnt, valid_cnt], dim=0)
    y = torch.index_select(y, dim=0, index=indices).to(device).split(
        [train_cnt, valid_cnt], dim=0)

    print("Train:", x[0].shape, y[0].shape)
    print("Valid:", x[1].shape, y[1].shape)

    # 모델 선언 및 구조 결정
    model = ImageClassifier(28 * 28, 10).to(device)
    optimizer = optim.Adam(model.parameters())
    crit = nn.CrossEntropyLoss()

    # 학습 수행
    trainer = Trainer(model, optimizer, crit)
    trainer.train(train_data=(x[0], y[0]),
                  valid_data=(x[1], y[1]),
                  config=config)

    #모델 저장
    torch.save({
        'model': trainer.model.state_dict(),
        'config': config
    }, config.model_fn)
Example #8
0
def main(config):
    # 실행 장치 설정
    device = torch.device('cpu') if config.gpu_id < 0 else torch.device(
        'cuda:%d' % config.gpu_id)

    # 데이터 로드
    x, y = load_mnist(is_train=True)
    x = x.view(x.size(0), -1)  # flatten 된 형태

    train_cnt = int(x.size(0) * config.train_ratio)
    valid_cnt = x.size(0) - train_cnt

    # Shuffle & Random Split
    indices = torch.randperm(x.size(0))
    x = torch.index_select(x, dim=0, index=indices).to(device).split(
        [train_cnt, valid_cnt], dim=0)
    y = torch.index_select(y, dim=0, index=indices).to(device).split(
        [train_cnt, valid_cnt], dim=0)
    # split 되는 형태: [(train_cnt, 784) , (valid_cnt, 784)]

    print("Train : ", x[0].shape, y[0].shape)
    print("Valid : ", x[1].shape, y[1].shape)

    # load model, optimizer, criterion
    model = ImageClassifier(28**2, 10).to(device)
    optimizer = optim.Adam(model.parameters())
    criterion = nn.CrossEntropyLoss()

    trainer = Trainer(model, optimizer, criterion)

    trainer.train((x[0], y[0]), (x[1], y[1]), config)

    # 베스트 모델 및 가중치 저장
    torch.save({
        'model': trainer.model.state_dict(),
        'config': config,
    }, config.model_fn)