Example #1
0
    help="the model file to be evaluated. Usually it is of the form model_X.pth"
)
parser.add_argument('--outfile',
                    type=str,
                    default='experiment/kaggle.csv',
                    metavar='D',
                    help="name of the output csv file")

args = parser.parse_args()
use_cuda = torch.cuda.is_available()
state_dict = torch.load(args.model)
model.load_state_dict(state_dict)
model.eval()
if use_cuda:
    print('Using GPU')
    model.cuda()
else:
    print('Using CPU')

from data import data_transform_val

test_dir = args.data + '/test_images/mistery_category'


def pil_loader(path):
    # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
    with open(path, 'rb') as f:
        with Image.open(f) as img:
            return img.convert('RGB')

Example #2
0
                        default=0.001,
                        help='initial learning rate')
    parser.add_argument('-s',
                        type=bool,
                        default=True,
                        help='whether shuffle the dataset')
    parser.add_argument('-a',
                        type=bool,
                        default=False,
                        help='test the filter, reconstructed')
    parser.add_argument('-b', type=bool, default=False, help='test the acc')
    parser.add_argument('-c', type=bool, default=True, help='train')
    args = parser.parse_args()

    net = Resnet(BasicBlock)
    net = net.cuda()  #参数和模型应该都放在cuda上

    cifar10_training_loader = get_training_dataloader(
        batch_size=args.batchsize, shuffle=args.s)

    cifar10_test_loader = get_test_dataloader(batch_size=args.batchsize,
                                              shuffle=args.s)

    cifar10_image_loader = get_test_dataloader(batch_size=1, shuffle=args.s)

    loss_function = nn.CrossEntropyLoss()
    optimizer = optim.Adam(net.parameters(), lr=args.lr)
    #TIME_NOW = datetime.now().isoformat() #这个文件命名有点问题,Windows下文件夹名称不允许有:
    TIME_NOW = '20191025'
    checkpoint_path = os.path.join('checkpoint', TIME_NOW)