Example #1
0
def optimize(lr, clip):
    print("Optimizing with " + str(lr) + "lr, " + str(args.epochs) + " epochs, " + str(clip) + " clip")

    num_chans = [args.nhid] * (args.levels - 1) + [args.emsize]
    model = TCN(args, n_words, num_chans)

    if args.cuda:
        model.cuda()

    print("Parameters: " + str(sum(p.numel() for p in model.parameters())))
    torch.backends.cudnn.benchmark = True  # This makes dilated conv much faster for CuDNN 7.5

    optimizer = getattr(optim, args.optim)(model.parameters(), lr=lr)

    # Start training loop
    best_model_name = "model_" + args.experiment_name + ".pt"
    best_vloss = 1e8

    all_vloss = []
    for epoch in range(1, args.epochs+1):
        epoch_start_time = time.time()
        try:
            train(model, optimizer, lr, epoch, clip)
        except OverflowError:
            return {'status': 'fail'}

        print("Validating...")
        val_loss = evaluate(model, val_data)
        if np.isnan(val_loss) or val_loss > 100:
            return {'status' : 'fail'}

        print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | '
                'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time),
                                           val_loss, math.exp(val_loss)))

        print('-' * 89)

        # Save the model if the validation loss is the best we've seen so far.
        if val_loss < best_vloss:
            with open(best_model_name, 'wb') as f:
                print('Save model!\n')
                torch.save(model, f)
            best_vloss = val_loss

        # Anneal the learning rate if the validation loss plateaus
        if epoch > 10 and val_loss >= max(all_vloss[-5:]):
            lr = lr / 2.
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr
        all_vloss.append(val_loss)

    return {"status" : "ok", "loss" : best_vloss, "model_name" : best_model_name}
Example #2
0
def optimize(lr, clip):
    print("Optimizing with " + str(lr) + "lr, " + str(args.epochs) +
          " epochs, " + str(clip) + " clip")
    # Set the random seed manually for reproducibility.
    torch.manual_seed(args.seed)
    if torch.cuda.is_available():
        if not args.cuda:
            print(
                "WARNING: You have a CUDA device, so you should probably run with --cuda"
            )

    print(args)

    n_channels = [args.nhid] * args.levels
    model = TCN(args.model,
                input_size,
                input_size,
                n_channels,
                args.ksize,
                dropout=args.dropout)
    print('Parameter count: ', str(sum(p.numel() for p in model.parameters())))

    if args.cuda:
        model.cuda()

    #summary(model, (193, 88))
    optimizer = getattr(optim, args.optim)(model.parameters(), lr=lr)

    best_vloss = 1e8
    vloss_list = []
    model_name = "model_" + str(args.data) + "_" + str(
        args.experiment_name) + ".pt"
    for ep in range(1, args.epochs + 1):
        train(model, ep, lr, optimizer, clip)
        vloss = evaluate(model, X_valid, name='Validation')
        if np.isnan(vloss) or vloss > 1000:
            return {'status': 'fail'}
        if vloss < best_vloss:
            with open(model_name, "wb") as f:
                torch.save(model, f)
                print("Saved model!\n")
            best_vloss = vloss
        if ep > 10 and vloss > max(vloss_list[-10:]):
            lr /= 2
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr

        vloss_list.append(vloss)
    return {'status': 'ok', 'loss': best_vloss, 'model_name': model_name}
Example #3
0
def optimize(lr, clip):
    print("Optimizing with " + str(lr) + "lr, " + str(args.epochs) +
          " epochs, " + str(clip) + " clip")
    num_chans = [args.nhid] * (args.levels - 1) + [args.emsize]
    model = TCN(args, n_characters, num_chans)

    if args.cuda:
        model.cuda()

    print("Parameters: " + str(sum(p.numel() for p in model.parameters())))
    torch.backends.cudnn.benchmark = True  # This makes dilated conv much faster for CuDNN 7.5
    optimizer = getattr(optim, args.optim)(model.parameters(), lr=lr)

    # Start training loop
    all_losses = []
    best_vloss = 1e7
    for epoch in range(1, args.epochs + 1):
        try:
            train(model, optimizer, clip, lr, epoch)
        except OverflowError:
            return {'status': 'fail'}

        vloss = evaluate(model, val_data)
        if np.isnan(vloss) or vloss > 1000:
            return {'status': 'fail'}
        print('-' * 89)
        print('| End of epoch {:3d} | valid loss {:5.3f} | valid bpc {:8.3f}'.
              format(epoch, vloss, vloss / math.log(2)))

        if epoch > 10 and vloss > max(all_losses[-5:]):
            lr = lr / 2.
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr
        all_losses.append(vloss)

        if vloss < best_vloss:
            print("Saving...")
            with open("model_" + args.experiment_name + ".pt", "wb") as f:
                torch.save(model, f)
                print("Saved model!\n")
            best_vloss = vloss
    return {
        "status": "ok",
        "loss": best_vloss,
        "model_name": "model_" + args.experiment_name + ".pt"
    }
Example #4
0
            num_workers=num_threds,
            drop_last=False)
		
channel_sizes = [args.nhid] * args.levels
kernel_size = args.ksize

model_T = TCN(input_channels_T, n_classes, channel_sizes, kernel_size=kernel_size, dropout=args.dropout)
model_E = TCN(input_channels_E, n_classes, channel_sizes, kernel_size=kernel_size, dropout=args.dropout)
model_G = TCN(input_channels_G, n_classes, channel_sizes, kernel_size=kernel_size, dropout=args.dropout)

if args.cuda:
    model_T.cuda()
    model_E.cuda()
    model_G.cuda()
    
optimizer = getattr(optim, args.optim)([{'params': model_T.parameters(), 'lr': args.lr_T},
                                        {'params': model_E.parameters(), 'lr': args.lr_E},
                                        {'params': model_G.parameters(), 'lr': args.lr_G}
                                        ])#,momentum=0.9)

def save_network(network, network_label, epoch_label):
    save_filename = 'net_epoch_%d_id_%s.pth' % (epoch_label, network_label)
    save_path = os.path.join(args.savedir, save_filename)
    torch.save(network.state_dict(), save_path)
    print ('saved net: %s' % save_path)
    
def train(ep):
    global steps
    total_loss = 0
    model_T_loss = 0
    model_E_loss = 0
Example #5
0
    # Test set
    trueStateTEST = trueStateTEST.cuda()
    measuredStateTEST = measuredStateTEST.cuda()

### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###
### ~~~~~~~~~~~~~~~~~~~~~~ OPTIMIZER ~~~~~~~~~~~~~~~~~~~~~~~~ ###
if not testSession:
    # Create the optimizer
    optimizerParameters = {'optim': optimMethod, 'lr': lr}
else:
    # Loading the optimizer parameters to use
    optimMethod = modelContext['optimizer_parameters']['optim']
    lr = modelContext['optimizer_parameters']['lr']

# Initializing the optimizer
optimizer = getattr(optim, optimMethod)(model.parameters(), lr=lr)

### ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ###
### ~~~~~~~~~~~~~~~~~~~~~~ TRAINING ~~~~~~~~~~~~~~~~~~~~~~~~~ ###


def train(epoch):

    # Initialize training model and parameters
    model.train()
    total_loss = 0

    ################################

    # Training loop - run until we process every series of data
    for i in range(0, trainSeriesLength):
Example #6
0
    return sum(p.numel() for p in model.parameters() if p.requires_grad)


total_params = count_parameters(model)
print("Total params are ", total_params)

if args.cuda:
    model.cuda()
    train_x = train_x.cuda()
    train_y = train_y.cuda()
    test_x = test_x.cuda()
    test_y = test_y.cuda()

criterion = nn.CrossEntropyLoss()
lr = args.lr
optimizer = getattr(optim, args.optim)(model.parameters(), lr=lr)


def evaluate():
    model.eval()
    out = model(test_x.unsqueeze(1).contiguous())
    loss = criterion(out.view(-1, n_classes), test_y.view(-1))
    pred = out.view(-1, n_classes).data.max(1, keepdim=True)[1]
    correct = pred.eq(test_y.data.view_as(pred)).cpu().sum()
    counter = out.view(-1, n_classes).size(0)
    print('\nTest set: Average loss: {:.8f}  |  Accuracy: {:.4f}\n'.format(
        loss.item(), 100. * float(correct) / counter))
    return loss.item()


def train(ep):
training_dataloader = torch.utils.data.DataLoader(training_dataset,
                                                  collate_fn=collate_fn_padd,
                                                  batch_size=batch_size,
                                                  shuffle=True,
                                                  drop_last=False)

test_dataset = TCNDataset(training=False)
test_dataloader = torch.utils.data.DataLoader(test_dataset,
                                              collate_fn=collate_fn_padd,
                                              batch_size=batch_size,
                                              shuffle=False,
                                              drop_last=False)

single_TCN = TCN()
single_TCN = single_TCN.to(device)
single_TCN_optimizer = torch.optim.Adam(single_TCN.parameters(), lr=0.001)

multi_stage_TCN = MultiStageTCN()
multi_stage_TCN = multi_stage_TCN(device)
multi_stage_TCN_optimizer = torch.optim.Adam(multi_stage_TCN.parameters(),
                                             lr=0.001)

multi_stage_TCN_video_loss = MultiStageTCN()
multi_stage_TCN_video_loss = multi_stage_TCN_video_loss.to(device)
multi_stage_TCN_optimizer = torch.optim.Adam(
    multi_stage_TCN_video_loss.parameters(), lr=0.001)

parallel_TCNs = ParallelTCNs()
parallel_TCNs = parallel_TCNs.to(device)
parallel_TCNs_optimizer = torch.optim.Adam(parallel_TCNs.parameters(),
                                           lr=0.001)
Example #8
0
            pad_idx=symbols['<pad>'],
            dropout=dropout_rate,
            emb_dropout=emb_dropout_rate)
model = model.to(device)
print(model)

# folder to save model
save_path = 'model'
if not os.path.exists(save_path):
    os.makedirs(save_path)

# objective function
learning_rate = 4
criterion = nn.CrossEntropyLoss(size_average=False,
                                ignore_index=symbols['<pad>'])
optimizer = optim.SGD(model.parameters(), lr=learning_rate)  #Adam


# negative log likelihood
def NLL(logp, target, length):
    target = target[:, :torch.max(length).item()].contiguous().view(-1)
    logp = logp[:, :torch.max(length).item(), :].contiguous().view(
        -1, logp.size(-1))  # logp = logp.view(-1, logp.size(-1))
    return criterion(logp, target)


# training setting
epoch = 20
print_every = 50

# training interface