else: assistant = None # Model model = Tacotron(n_vocab=1+ len(ph_ids), embedding_dim=256, mel_dim=hparams.num_mels, linear_dim=hparams.num_freq, r=hparams.outputs_per_step, padding_idx=hparams.padding_idx, use_memory_mask=hparams.use_memory_mask, ) model = model.cuda() #model = DataParallelFix(model) optimizer = optim.Adam(model.parameters(), lr=hparams.initial_learning_rate, betas=( hparams.adam_beta1, hparams.adam_beta2), weight_decay=hparams.weight_decay) # Load checkpoint if checkpoint_path: print("Load checkpoint from: {}".format(checkpoint_path)) checkpoint = torch.load(checkpoint_path) model.load_state_dict(checkpoint["state_dict"]) optimizer.load_state_dict(checkpoint["optimizer"]) try: global_step = int(checkpoint["global_step"]) global_epoch = int(checkpoint["global_epoch"]) except: # TODO
model = Tacotron( n_vocab=1 + len(ph_ids), embedding_dim=256, mel_dim=hparams.num_mels, linear_dim=hparams.num_freq, r=hparams.outputs_per_step, padding_idx=hparams.padding_idx, use_memory_mask=hparams.use_memory_mask, ) model_discriminator = LSTMDiscriminator(hparams.num_mels, 32, 2) model = model.cuda() model_discriminator.cuda() #model = DataParallelFix(model) optimizer = optim.Adam(model.parameters(), lr=hparams.initial_learning_rate, betas=(hparams.adam_beta1, hparams.adam_beta2), weight_decay=hparams.weight_decay) optimizer_discriminator = optim.Adam(model.parameters(), lr=hparams.initial_learning_rate, betas=(hparams.adam_beta1, hparams.adam_beta2), weight_decay=hparams.weight_decay) # Load checkpoint if checkpoint_path: print("Load checkpoint from: {}".format(checkpoint_path)) checkpoint = torch.load(checkpoint_path) model.load_state_dict(checkpoint["state_dict"])