for attr, value in sorted(args.__dict__.items()): print("\t{}={}".format(attr.upper(), value)) file.write("\t{}={}\n".format(attr.upper(), value)) file.close() # model if args.snapshot is None: if args.CNN: print("loading CNN model.....") model = model_CNN.CNN_Text(args) elif args.DEEP_CNN: print("loading DEEP_CNN model......") model = model_DeepCNN.DEEP_CNN(args) elif args.LSTM: print("loading LSTM model......") model = model_LSTM.LSTM(args) elif args.GRU: print("loading GRU model......") model = model_GRU.GRU(args) elif args.BiLSTM: print("loading BiLSTM model......") model = model_BiLSTM.BiLSTM(args) elif args.BiLSTM_1: print("loading BiLSTM_1 model......") model = model_BiLSTM_1.BiLSTM_1(args) elif args.CNN_LSTM: print("loading CNN_LSTM model......") model = model_CNN_LSTM.CNN_LSTM(args) elif args.CLSTM: print("loading CLSTM model......") model = model_CLSTM.CLSTM(args)
# 处理dev数据 d_data_list_node = dp.datadeal('data/raw.clean.dev', is_traindata=False) # 处理test数据 test_data_node = dp.datadeal('data/raw.clean.test', is_traindata=False) if args.out_word_v: args.word_embed = out_word_vec.add_word_v(data_v) args.embed_num = len(data_v) args.class_num = len(lab_v) print("\nParameters:") for attr, value in sorted(args.__dict__.items()): if attr == 'word_embed': continue print("\t{}={}".format(attr.upper(), value)) return t_data_list_node, data_v, d_data_list_node, lab_v if __name__ == "__main__": train_data_list_node, data_voc, dev_data_list_node, lab_voc = loaddata() lstm = model_LSTM.LSTM(args) try: train.train_lstm(train_data_list_node, data_voc, dev_data_list_node, lab_voc, lstm, args) except KeyboardInterrupt: print('\nstop by human!!!')