def main(args): print_config(args) set_random_seed(args['random_seed']) model = ModelHandler(args) model.train() model.test()
help="Epsilon for Adam optimizer.") parser.add_argument('--gpu_list', type = str, default = '2' , help = 'gpu_list,1,2') parser.add_argument('--save_state_dir', type = str, default = 'output') #output for data and model parser.add_argument('--pretrained_dir', type = str, default = 'output')#input for model parser.add_argument('--preprocessed_data_dir', type = str, default = '108647') #input for data parser.add_argument('--mode', type = str, default = 'preprocess', help = ' preprocess or train or test or debug') parser.add_argument('--data_set_range', type = str, default = 'DEV_DATA' , help = ' TRAIN_DATA or DEV_DATA ') args = vars(parser.parse_args()) if args['model_name'] == 'SpanBERT': download_model() args['model_path'] = 'tmp_' os.environ["CUDA_VISIBLE_DEVICES"] = args['gpu_list'] print("args: ",args) handler = ModelHandler(args) if args['mode']=='train' or args['mode']=='debug': handler.train() elif args['mode']=='test': handler.test()