def train_test(tester, arch, enable_gpu): pin_memory = enable_gpu dataloaders, class_to_idx = model_helper.get_dataloders( data_dir, enable_gpu, num_workers, pin_memory) model, optimizer, criterion = model_helper.create_model( arch, learning_rate, hidden_units, class_to_idx) if enable_gpu: model.cuda() else: torch.set_num_threads(num_cpu_threads) epochs = gpu_epochs if enable_gpu else cpu_epochs model_helper.train(model, criterion, optimizer, epochs, dataloaders['training'], dataloaders['validation'], enable_gpu) checkpoint_dir = testing_dir + '/gpu' if enable_gpu else '/cpu' if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) checkpoint = checkpoint_dir + '/' + arch + '_checkpoint.pth' model_helper.save_checkpoint(checkpoint, model, optimizer, arch, learning_rate, hidden_units, epochs)
def main(): start_time = time() in_args = get_input_args() use_gpu = torch.cuda.is_available() and in_args.gpu print("Training on {} using {}".format("GPU" if use_gpu else "CPU", in_args.arch)) print( "Architecture:{}, Learning rate:{}, Hidden Units:{}, Epochs:{}".format( in_args.arch, in_args.learning_rate, in_args.hidden_units, in_args.epochs)) dataloaders, class_to_idx = model_helper.get_dataloders(in_args.data_dir) model, optimizer, criterion = model_helper.create_model( in_args.arch, in_args.learning_rate, in_args.hidden_units, class_to_idx) if use_gpu: model.cuda() criterion.cuda() else: torch.set_num_threads(in_args.num_threads) model_helper.train(model, criterion, optimizer, in_args.epochs, dataloaders['training'], dataloaders['validation'], use_gpu) if in_args.save_dir: if not os.path.exists(in_args.save_dir): os.makedirs(in_args.save_dir) file_path = in_args.save_dir + '/' + in_args.arch + '_checkpoint.pth' else: file_path = in_args.arch + '_checkpoint.pth' model_helper.save_checkpoint(file_path, model, optimizer, in_args.arch, in_args.learning_rate, in_args.hidden_units, in_args.epochs) test_loss, accuracy = model_helper.validate(model, criterion, dataloaders['testing'], use_gpu) print("Test Accuracy: {:.3f}".format(accuracy)) end_time = time() utility.print_elapsed_time(end_time - start_time)
def main(): Input_aruguments = argument_parser() print("Chosen Learning rate is {}, Hidden Units is {} and Epochs are {}". format(Input_aruguments.learning_rate, Input_aruguments.hidden_units, Input_aruguments.epochs)) batch_size = 64 gpu_check = torch.cuda.is_available() and Input_aruguments.gpu if gpu_check: print("GPU Device available.") else: warnings.warn( "No GPU found. Please use a GPU to train your neural network.") print("Data loading started.") train_dir = Input_aruguments.data_dir + '/train' valid_dir = Input_aruguments.data_dir + '/valid' test_dir = Input_aruguments.data_dir + '/test' data_transforms = { 'training_sets': transforms.Compose([ transforms.RandomRotation(30), transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'validation_sets': transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'testing_sets': transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) } # Load the datasets with ImageFolder image_datasets = { 'training_sets': datasets.ImageFolder(train_dir, transform=data_transforms['training_sets']), 'validation_sets': datasets.ImageFolder(valid_dir, transform=data_transforms['validation_sets']), 'testing_sets': datasets.ImageFolder(test_dir, transform=data_transforms['testing_sets']) } # Using the image datasets and the transforms, define the dataloaders dataloaders = { 'training_sets': torch.utils.data.DataLoader(image_datasets['training_sets'], batch_size, shuffle=True), 'validation_sets': torch.utils.data.DataLoader(image_datasets['validation_sets'], batch_size, shuffle=True), 'testing_sets': torch.utils.data.DataLoader(image_datasets['testing_sets'], batch_size, shuffle=True) } print("Data loading completed. Model creation in-progress, please wait.") model, optimizer, criterion = model_helper.create_model( Input_aruguments.arch, Input_aruguments.hidden_units, Input_aruguments.learning_rate, image_datasets['training_sets'].class_to_idx) print("Model creation completed. Moving to GPU if available, please wait.") if gpu_check: model.cuda() criterion.cuda() print("Training started, please wait it might take upto 5 mins.") model_helper.train(model, criterion, optimizer, Input_aruguments.epochs, dataloaders['training_sets'], dataloaders['validation_sets'], gpu_check) print("Training completed. Saving checkpoints, please wait.") model_helper.save_checkpoint(model, optimizer, batch_size, Input_aruguments.learning_rate, Input_aruguments.arch, Input_aruguments.hidden_units, Input_aruguments.epochs) print("Saving checkpoints complete. Validating model, please wait.") test_loss, accuracy = model_helper.validate(model, criterion, dataloaders['testing_sets'], gpu_check) print("Validation Accuracy: {:.3f}".format(accuracy)) image_path = 'flower_data/test/66/image_05582.jpg' print("Predication for: {}".format(image_path)) probs, classes = model_helper.predict(image_path, model, gpu_check) print(probs) print(classes)
#### Load initial data _,y_train,_ = load_data(data_path) #### Load a correction I have done thanks to "clean_sequences" function train_sent_corrected, test_sent = load_corrected_sentences(data_path) #### Split training data iun training and validation sets val_sent, y_val, train_sent, y_train, idxs_select_val = create_train_val_sets(train_sent_corrected, y_train, validation_ratio = 0.2) print('data loaded') #### Data augmentation ### with random walk method #train_sent, y_train = augment_data_random_walk(train_sent, y_train) #print('random walk augmentation done') #### Encoding word --> integers train_seq_encoded,test_seq_encoded,val_seq_encoded, y_train,y_val, word2index = encode_sequences(train_sent,test_sent,val_sent,y_train,y_val,maxlen = 50) #### Load pre-trained embedding fitted to current dictionary embeddings,word2embedding = create_embedding(bin_file, word2index) #visualize_embedding(train_sent_corrected+test_sent_corrected,word2index,embeddings) #### Training # Design the model model = multi_CNN(embeddings, train_embedding = False) #Train the model train(model, train_seq_encoded, y_train, val_seq_encoded, y_val, optimizer = 'sgd', batch_size = 64, nb_epochs = 300)
def main(): start_time = time() in_args = get_input_args() # Check for GPU use_gpu = torch.cuda.is_available() and in_args.gpu # Print parameter information if use_gpu: print("Training on GPU{}".format( " with pinned memory" if in_args.pin_memory else ".")) else: print("Training on CPU using {} threads.".format(in_args.num_threads)) print("Architecture:{}, Learning rate:{}, Hidden Units:{}, Epochs:{}".format( in_args.arch, in_args.learning_rate, in_args.hidden_units, in_args.epochs)) # Get dataloaders for training dataloaders, class_to_idx = model_helper.get_dataloders(in_args.data_dir, use_gpu, in_args.num_workers, in_args.pin_memory) # Create model model, optimizer, criterion = model_helper.create_model(in_args.arch, in_args.learning_rate, in_args.hidden_units, class_to_idx) # Move tensors to GPU if available if use_gpu: model.cuda() criterion.cuda() else: torch.set_num_threads(in_args.num_threads) # Train the network model_helper.train(model, criterion, optimizer, in_args.epochs, dataloaders['training'], dataloaders['validation'], use_gpu) # Save trained model if in_args.save_dir: # Create save directory if required if not os.path.exists(in_args.save_dir): os.makedirs(in_args.save_dir) # Save checkpoint in save directory file_path = in_args.save_dir + '/' + in_args.arch + '_checkpoint.pth' else: # Save checkpoint in current directory file_path = in_args.arch + '_checkpoint.pth' model_helper.save_checkpoint(file_path, model, optimizer, in_args.arch, in_args.learning_rate, in_args.hidden_units, in_args.epochs) # Get prediction accuracy using test dataset test_loss, accuracy = model_helper.validate( model, criterion, dataloaders['testing'], use_gpu) print("Testing Accuracy: {:.3f}".format(accuracy)) # Computes overall runtime in seconds & prints it in hh:mm:ss format end_time = time() utility.print_elapsed_time(end_time - start_time)
def main(): start_time = time() in_args = get_input_args() use_gpu = torch.cuda.is_available() and in_args.gpu print("Training on {} using {}".format("GPU" if use_gpu else "CPU", in_args.arch)) print("Learning rate:{}, Hidden Units:{}, Epochs:{}".format( in_args.learning_rate, in_args.hidden_units, in_args.epochs)) if not os.path.exists(in_args.save_dir): os.makedirs(in_args.save_dir) training_dir = in_args.data_dir + '/train' validation_dir = in_args.data_dir + '/valid' testing_dir = in_args.data_dir + '/test' data_transforms = { 'training': transforms.Compose([ transforms.RandomRotation(30), transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'validation': transforms.Compose([ transforms.Scale(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'testing': transforms.Compose([ transforms.Scale(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) } dirs = { 'training': training_dir, 'validation': validation_dir, 'testing': testing_dir } image_datasets = { x: datasets.ImageFolder(dirs[x], transform=data_transforms[x]) for x in ['training', 'validation', 'testing'] } dataloaders = { x: torch.utils.data.DataLoader(image_datasets[x], batch_size=64, shuffle=True) for x in ['training', 'validation', 'testing'] } model, optimizer, criterion = model_helper.create_model( in_args.arch, in_args.hidden_units, in_args.learning_rate, image_datasets['training'].class_to_idx) if use_gpu: model.cuda() criterion.cuda() model_helper.train(model, criterion, optimizer, in_args.epochs, dataloaders['training'], dataloaders['validation'], use_gpu) file_path = in_args.save_dir + '/' + in_args.arch + \ '_epoch' + str(in_args.epochs) + '.pth' model_helper.save_checkpoint(file_path, model, optimizer, in_args.arch, in_args.hidden_units, in_args.epochs) test_loss, accuracy = model_helper.validate(model, criterion, dataloaders['testing'], use_gpu) print("Post load Validation Accuracy: {:.3f}".format(accuracy)) image_path = 'flowers/test/28/image_05230.jpg' print("Predication for: {}".format(image_path)) probs, classes = model_helper.predict(image_path, model, use_gpu) print(probs) print(classes) end_time = time() utility.print_elapsed_time(end_time - start_time)