Example #1
0
def upload():
    target = os.path.join(APP_ROOT, "images/")
    print(target)
    if not os.path.isdir(target):
        os.mkdir(target)

    i = 0
    for file in request.files.getlist("file"):
        print(file)
        filename = file.filename
        destination = "/".join([target, "a" + str(i) + ".png"])
        i += 1
        print(destination)
        file.save(destination)

    save_face1("D:\T\SpitHackathon\src\images/a0.png")
    img_1 = readImage("D:\T\SpitHackathon\src\images/a.jpeg")
    save_face2("D:\T\SpitHackathon\src\data/frame0.jpg")
    img_2 = readImage("D:\T\SpitHackathon\src\images/b.jpeg")
    output = verify_images(img_1, img_2)

    if (output):
        return render_template("complete.html")
    else:
        return render_template("notComplete.html")
def getConvImage(name, layer=2, index=0):
    image = model_images.readImage(name, cv_2=True)
    image = model_images.getFaces(image)[0]
    images = getConvList(image, layer=8)
    img = images[index]
    img = Image.fromarray(img)
    return img
def extract_faces(source=None, destination=None):

    if (source == None): source = os.path.join(os.getcwd(), 'lfw_data')
    if (destination == None):
        destination = os.path.join(os.getcwd(), 'lfw_data_faces')

    for folder in os.listdir(source):
        folder_path = os.path.join(source, folder)
        os.mkdir(os.path.join(destination, folder))
        for img in os.listdir(folder_path):
            img_path = os.path.join(folder_path, img)
            print(img_path)
            faces = getFaces(readImage(img_path, cv_2=True))
            if len(faces) > 0:
                face = faces[0]
                face.save(os.path.join(destination, folder, img))
def generate_np_matrix(source=None):
    print('Creating Numpy Matrix...')
    if (source == None): source = os.path.join(os.getcwd(), 'lfw')
    img_arr = []

    for folder in os.listdir(source):
        folder_path = os.path.join(source, folder)

        for img in os.listdir(folder_path):
            img_path = os.path.join(folder_path, img)
            image = readImage(img_path)
            ima = np.array(image)
            img_arr.append(ima)

    np_arr = np.array(img_arr)
    print('Numpy Matrix Created.')
    return np_arr
from model_images import getFaces, readImage
import numpy as np
import cv2
from PIL import Image
import time
import pickle
import os
import pandas as pd

loaded_model = pickle.load(open('model.sav', 'rb'))

while True:

    tic = time.time()

    IMG = readImage('download.jpg', cv_2=True)
    faces = getFaces(IMG)

    if len(faces) != 0:

        face = faces[0]
        vec = getFeatureVector(face)
        cluster = loaded_model.predict([vec])

        path = os.path.join(os.getcwd(), 'Clusters')
        cl_path = os.path.join(path, 'Cluster_' + str(cluster[0]),
                               'cluster_' + str(cluster[0]) + '_data.csv')
        df = pd.read_csv(cl_path)
        vectors = df.to_numpy()

        for r_idx, og_vec in enumerate(vectors):
import os
import numpy as np
from PIL import Image
from model_images import getFaces, highlightFaces, readImage, cv2_to_pil

path = os.path.join(os.getcwd(), 'IMDB_Data')
new_path = os.path.join(os.getcwd(), 'Data')

file_no = 0

for file in os.listdir(path):

    print('Processing file: ', file_no, '\n')
    img_dir = os.path.join(path, file)
    list_images = os.listdir(img_dir)
    new_file = os.path.join(new_path, 'file_' + str(file_no))
    os.mkdir(new_file)

    img_no = 0

    for image in list_images:
        img = readImage(os.path.join(img_dir, image), cv_2=True)
        images = getFaces(img)
        if len(images) != 0:
            img = images[0]
            name = str(img_no) + '.jpg'
            save_path = os.path.join(new_file, name)
            img.save(save_path)
            img_no += 1

    file_no += 1
arr = np.empty((0,2622), float)

def generate_dataframe(data):
    df = pd.DataFrame(data, columns = feature_col_idx)
    return df

def appendImgToNPA(image, arr, name):
    print('Processing image ', name)
    vec = getFeatureVector(image)
    arr = np.append(arr, [vec], axis = 0)
    return arr

'''
for filename in os.listdir(path):
    img_path = os.path.join(path, filename)
    image = readImage(img_path)
    img = np.asarray(image)
    image_np = np.empty(img.shape, float)
    image_np = np.append(image_np, img, axis = 0)
    image_np = np.append(image_np, img, axis = 0)
    image = Image.fromarray(image_np)
    arr = appendImgToNPA(image, arr, filename)
'''
for filename in img_list:
    path = os.path.join(os.getcwd(), 'Yale', filename)
    img_path = os.path.join(path)
    image = readImage(img_path)
    arr = appendImgToNPA(image, arr, path)

df = generate_dataframe(arr)
df.to_csv(r'Yale_DataFrame.csv', index = False)