def do_train(session, model): return train_on_copy_task(session, model, length_from=3, length_to=8, vocab_lower=2, vocab_upper=10, batch_size=100, max_batches=5000, batches_in_epoch=1000, verbose=False)
# 2x encoder state size model = Seq2SeqModel(encoder_cell=LSTMCell(10), decoder_cell=LSTMCell(20), vocab_size=10, embedding_size=10, attention=True, bidirectional=True, debug=False) session.run(tf.global_variables_initializer()) train_on_copy_task(session, model, length_from=3, length_to=8, vocab_lower=2, vocab_upper=10, batch_size=100, max_batches=3000, batches_in_epoch=1000, verbose=True) # ## Fun exercise, compare performance of different seq2seq variants. # # Comparison will be done using train loss tracks, since the task is algorithmic and data is generated directly from true distribution and out-of-sample testing doesn't really make sense. # In[4]: loss_tracks = dict() def do_train(session, model):