def run_ensemble(params): driver_id, verbose = params results = [] for i, get_data, model, repeat in STACK: results.append((run_model( (i, driver_id, model, get_data, repeat)), WEIGHTS[i])) predictions = np.array([r[0][0] * r[1] for r in results]).sum(0) testY = results[0][0][1] if verbose >= 1: logging.info('finished driver %s' % driver_id) return predictions, testY
def run_ensemble(params): driver_id, verbose = params results = [] for i, get_data, model, repeat in STACK: results.append(( run_model((i, driver_id, model, get_data, repeat)), WEIGHTS[i] )) predictions = np.array([r[0][0] * r[1] for r in results]).sum(0) testY = results[0][0][1] if verbose >= 1: logging.info('finished driver %s' % driver_id) return predictions, testY
def compute_weights(params): driver_id, verbose, stack_option = params stack = STACK if stack_option == 's' else MODELS predictions = {} for i, get_data, model, repeat in stack: start_time = time.time() predictions[i], testY = run_model((i, driver_id, model, get_data, repeat)) if verbose == 2: logging.info('%s: %.2f' % (i, time.time() - start_time)) if verbose >= 1: logging.info('finished driver %s' % driver_id) return driver_id, predictions, testY