Example #1
0
def main():
    # get hyperparameters from input args
    opt = ArgParser().get_options()

    # deterministic seed across numpy, torch and cuda
    # store as variable due to garbage collecting
    seeder = Seeder(opt.seed)
    seeder.activate()

    # data from ./zoo.py
    opt.model_class = models[opt.model_name]
    opt.initializer = initializers[opt.initializer]
    opt.optimizer = optimizers[opt.optimizer]
    # data from ./config.yml
    opt.dataset_file = config['datasets'][opt.dataset]
    opt.model_inputs = config['model_inputs'][opt.model_name]

    # run on gpu if available
    device = opt.device
    if device is None:
        device = 'cuda' if torch.cuda.is_available() else 'cpu'
    opt.device = torch.device(device)

    runner = ModelRunner(opt)
    runner.run()
Example #2
0
    def __init__(self, port=80, threaded=True, debug=True):
        self.port = port
        self.threaded = threaded
        self.debug = debug
        self.app = Flask(__name__.split('.')[0])
        self.app.config['SECRET_KEY'] = str(
            UUID(int=random.randint(0, 10000000000)))
        self.app.add_url_rule('/',
                              'index',
                              self.index,
                              methods=['GET', 'POST'])
        self.app.add_url_rule('/players/<p1>/<p2>',
                              'players',
                              self.players,
                              methods=['GET', 'POST'])
        self.app.add_url_rule('/bets', 'bets', self.bets)
        self.app.add_url_rule('/rankings', 'rankings', self.rankings)
        self.app.add_url_rule('/recent', 'recent', self.recentMatches)
        helper.fillRegionDict()
        model = MLP(max_epochs=10000,
                    batch_size=128,
                    learning_rate=5e-3,
                    width=50,
                    layers=1)
        print('Model Created')
        self.runner = ModelRunner(model,
                                  "data/matchResults_aligulac.csv",
                                  trainRatio=0.8,
                                  testRatio=0.2,
                                  lastGameId="302054",
                                  keepPercent=1.0,
                                  decay=False)
        print(datetime.now(), 'Model Runner Created')
        print(self.runner.getLastId())
        self.runner.loadProfiles()
        self.runner.model.loadBackup()
        self.runner.clearMemory()
        print("Memory Cleared")

        rankingsList = self.runner.generateRanking(20)
        rank = 1
        print(
            "Rank, Name, Race, Country, Project W/R, Elo, Glicko, MatchExpAvg")
        for [rate, profile] in rankingsList:
            print(rank, profile.name, profile.race, profile.country, rate,
                  profile.elo, profile.glickoRating, profile.expOverall)
            rank += 1

        self.liveThread = threading.Thread(target=self.runner.getLive)
        self.liveThread.start()
Example #3
0
def main():
    parser = argparse.ArgumentParser(description="-----[IMDB-classifier]-----")
    parser.add_argument("--sample",
                        default=False,
                        action='store_true',
                        help="flag whether use sample dataset")
    parser.add_argument(
        "--mode",
        default="train",
        help="train: train (with test) a model / test: test saved models")
    parser.add_argument("--model",
                        default="simple-gru",
                        help="available models: simple-gru, ...")
    parser.add_argument("--epoch",
                        default=10,
                        type=int,
                        help="number of max epoch")
    parser.add_argument("--learning_rate",
                        default=0.001,
                        type=float,
                        help="learning rate")
    parser.add_argument("--batch_size",
                        default=32,
                        type=int,
                        help="batch size")

    options = parser.parse_args()

    params = {
        'sample': options.sample,
        'model': options.model,
        'mode': options.mode,
        'batch_size': options.batch_size,
        'epoch': options.epoch,
        'learning_rate': options.learning_rate
    }

    modelRunner = ModelRunner(params)
    if options.mode == 'train':
        print("=" * 20 + "TRAINING STARTED" + "=" * 20)
        modelRunner.train()
    elif options.mode == 'test':
        print("=" * 20 + "TESTING STARTED" + "=" * 20)
        modelRunner.load_model()
        modelRunner.test()
    def download_model_from_storage(self):
        if len(self.model_url) == 0:
            return
        try:
            self.logger.info("request for downloading model file: %s",
                             self.model_url)
            r = requests.get(self.model_url, stream=True)
            self.logger.info("request status for downloading model file: %d",
                             r.status_code)
            filepath = 'ml_model'
            with open(filepath, 'wb') as fd:
                for chunk in r.iter_content(2000):
                    fd.write(chunk)

            self.modelrunner = ModelRunner(filepath)

        except Exception as e:
            self.logger.info("model file cannot be downloaded: %s", str(e))
Example #5
0
def main(args):
    # create dataloader
    data_loader = DataLoaderFactory()

    train_data_loader = data_loader.get_input_for_ccf(file_path,
                                                      batch_size,
                                                      max_seq_length,
                                                      shuffle,
                                                      drop_last)

    test_data_loader = data_loader.get_input_for_ccf(file_path,
                                                      batch_size,
                                                      max_seq_length,
                                                      shuffle,
                                                      drop_last)

    dev_data_loader = data_loader.get_input_for_ccf(file_path,
                                                      batch_size,
                                                      max_seq_length,
                                                      shuffle,
                                                      drop_last)

    # 设置task model
    task_model = TaskModel(num_labels=len(args.label_to_id), dropout_prob=args.dropout_prob,
                           bret_pretrainded_path=args.bert_pretrain_path)

    # 重新加载模型参数
    # print("从test_model.bin 加载参数")
    # task_model.load_state_dict(torch.load(os.path.join(os.path.dirname(curr_path), "model_save", "model_89.15.bin"),
    #                                       "cuda" if torch.cuda.is_available() else None))

    # 设置优化器
    optimizer = get_optim(task_model.parameters(), args)

    # print config
    print("args", args)

    # 开始模型训练
    cls_app = ModelRunner(task_type="cls", is_bert=False, label_to_id=args.label_to_id)

    cls_app.train(total_step=args.total_step, eval_per_step=args.eval_per_step, task_model=task_model,
                  model_save_path=args.model_save_path, optimizer=optimizer,
                  train_data_loader=train_data_loader, dev_data_loader=dev_data_loader,
                  eval_label_list=list(args.label_to_id.values()), compare_param="f1",
                  eval_file_save_name=args.eval_file_save_name)

    cls_app.predict_for_ccf(dataiter=dev_data_loader, model=task_model,
                                    save_file_path="test_predict_out.txt",
                                    model_path=args.model_save_path, load_from_onnx=False)

    print("模型运行完成")
Example #6
0
def main(argv):
    data_loader = BaseLoader.get_loader_from_flags(FLAGS.data_set)
    train_set, valid_set, test_set = data_loader.load_dataset(FLAGS.num_steps, FLAGS.shuffle_train)
    model = DualStageRNN(encoder_dim=FLAGS.encoder_dim,
                         decoder_dim=FLAGS.decoder_dim,
                         num_steps=FLAGS.num_steps,
                         num_series=data_loader.num_series,
                         use_cur_exg=FLAGS.use_cur_exg)
    save_path = 'data/data_nasdaq'
    model_runner = ModelRunner(model, data_loader.label_scaler, FLAGS,save_path)

    model_runner.train(train_set, valid_set, test_set, FLAGS.max_epoch)
    # model_runner.restore('logs/ModelWrapper/lr-0.001_encoder-32_decoder-32/20190922-125838/saved_model')
    model_runner.evaluate(test_set, plot=FLAGS.plot_prediction)

    return
    def prep_trial(self, input_params, grid_logger, grid_logger_avg):
        runners = []

        for it in range(input_params['iterations']):

            # train and test split
            if Train_test_split == 'bipartite':
                person_data = np.delete(np.arange(len(self._labels[0])), np.arange(Bipartite_products))
                rand_test_indices = np.random.choice(person_data, round(len(person_data) * 0.9), replace=False)
                rand_train_indices = np.delete(np.arange(len(self._labels[0])), rand_test_indices)
            else:
                rand_test_indices = np.random.choice(len(self._labels[0]), round(len(self._labels[0]) * 0.9), replace=False)
                rand_train_indices = np.delete(np.arange(len(self._labels[0])), rand_test_indices)

            train = [[k for k in rand_train_indices if self._labels[j][k] != -1] for j in range(len(self._labels))]
            test = [[k for k in rand_test_indices if self._labels[j][k] != -1] for j in range(len(self._labels))]
            test_labels = [torch.tensor([self._labels[j][k] for k in rand_test_indices if self._labels[j][k] != -1],
                                        dtype=torch.double).to(self._device) for j in range(input_params['time_inds'])]
            train_labels = [torch.tensor([self._labels[j][k] for k in rand_train_indices if self._labels[j][k] != -1],
                                        dtype=torch.double).to(self._device) for j in range(input_params['time_inds'])]

            input_params['it_num'] = it
            input_params['activation'] = torch.nn.functional.relu
            input_params['train_person'] = rand_train_indices
            input_params['test_person'] = rand_test_indices
            input_params['training_inds'] = train
            input_params['test_inds'] = test
            input_params['training_labels'] = train_labels
            input_params['test_labels'] = test_labels
            input_params['adj_matrices'] = self._adjacency_matrices
            input_params['feature_matrices'] = self._feature_matrices

            dumping_name = ""
            logger = self.fix_logger(dumping_name)
            runner = ModelRunner(input_params, logger=logger)
            runners.append(runner)


        execute_runners(runners, grid_logger, grid_logger_avg, is_nni=self._nni)
import logging
# pylint: disable-msg=F0401
# pylint: disable=no-name-in-module
from app_config import mlflow_config, service_config
from model_runner import ModelRunner

model_handler = ModelRunner(mlflow_config, service_config)

if __name__ == '__main__':
    logging_level = service_config['log_level']

    log = logging.getLogger('werkzeug')
    log.setLevel(logging_level)

    model_handler.run_flask_server(port=service_config['port'], host='0.0.0.0')
Example #9
0
def main() -> None:
    device = f"cuda:{gpu_number}" if torch.cuda.is_available() else torch.device('cpu')
    print(device)

    train_boxes_df = pd.read_csv(META_TRAIN)
    train_boxes_df = preprocess_boxes(train_boxes_df)
    train_images_df = pd.read_csv('folds/orig_alex_folds.csv')    
    print(f'\nTotal images: {len(train_images_df.image_id.unique())}')
    
    # Leave only images with bboxes
    image_id_column = 'image_id'
    print('Leave only train images with boxes')
    with_boxes_filter = train_images_df[image_id_column].isin(train_boxes_df[image_id_column].unique())
    
    # train/val images
    images_val = train_images_df.loc[
        (train_images_df['fold'] == fold) & with_boxes_filter, image_id_column].values
    images_train = train_images_df.loc[
        (train_images_df['fold'] != fold) & with_boxes_filter, image_id_column].values     
    print(f'\nTrain images:{len(images_train)}, validation images {len(images_val)}')
    
    # get datasets
    train_dataset = WheatDataset(
                                image_ids = images_train[:16], 
                                image_dir = TRAIN_DIR, 
                                #train_box_callback,
                                labels_df = train_boxes_df,
                                transforms = get_train_transforms(image_size), 
                                is_test = False
                                )
    valid_dataset = WheatDataset(
                                image_ids = images_val[:16], 
                                image_dir = TRAIN_DIR, 
                                labels_df = train_boxes_df,
                                #train_box_callback,
                                transforms=get_valid_transforms(image_size), 
                                is_test=True
                                )
    # get dataloaders
    train_data_loader = DataLoader(
        train_dataset,
        batch_size=batch_size,
        shuffle=True,
        num_workers=num_workers,
        collate_fn=collate_fn
        )

    valid_data_loader = DataLoader(
        valid_dataset,
        batch_size=inf_batch_size,
        shuffle=False,
        num_workers=num_workers,
        collate_fn=collate_fn
        )
        
    # efficientdet config
    config = get_efficientdet_config(f'tf_efficientdet_d{model_name[-1]}')
    config.num_classes = 1
    config.image_size = image_size

    net = EfficientDet(config, pretrained_backbone=False)     
    net.class_net = HeadNet(config, num_outputs=config.num_classes, norm_kwargs=dict(eps=.001, momentum=.01))

    weights_file = f'{experiment_name}.pth'
    # If resume training
    if os.path.exists(weights_file):        
        print(f'Continue training, loading weights from: {weights_file}')
        load_weights(net, weights_file)
    else:
        print(f'Use coco pretrain')
        pretrain = get_effdet_pretrain_names(model_name)
        load_weights(net, '../../timm-efficientdet-pytorch/{pretrain}')
    model = DetBenchTrain(net, config)

    runner = ModelRunner(model, device)
    weights_file = f'{experiment_name}.pth'
    # add tags 
    neptune.log_text('save checkpoints as', weights_file[:-4])

    # run training 
    runner.run_train(train_data_loader, valid_data_loader, n_epoches=n_epochs, weights_file=weights_file,
                      factor=factor, start_lr=start_lr, min_lr=min_lr, lr_patience=lr_patience, overall_patience=overall_patience, loss_delta=loss_delta)
    neptune.stop()
Example #10
0
                                              n_items,
                                              iter=iter)
        X_neg_sppmi = convert_to_SPPMI_matrix(X_neg,
                                              max_row=n_items,
                                              shifted_K=SHIFTED_K_VALUE)
        Y_neg_sppmi = None
        t2 = time.time()
        print 'Time : %d seconds' % (t2 - t1)

        # build the model
        print 'build the model...'
        t1 = time.time()
        runner = ModelRunner(train_data,
                             vad_data,
                             None,
                             X_sppmi,
                             X_neg_sppmi,
                             Y_sppmi,
                             None,
                             save_dir=save_dir)
        U, V, ndcg100 = runner.run("rme",
                                   n_jobs=1,
                                   lam=lam,
                                   lam_emb=lam_emb,
                                   n_components=n_components,
                                   ret_params_only=1)
        t2 = time.time()
        print 'Time : %d seconds' % (t2 - t1)
        print '*************************************ITER %d ******************************************' % iter
        print 'NDCG@100 at this iter:', ndcg100
        #
        if best_ndcg100 < ndcg100:
def main() -> None:
    device = f"cuda:{gpu_number}" if torch.cuda.is_available(
    ) else torch.device('cpu')
    print(device)

    train_boxes_df = pd.read_csv(META_TRAIN)
    train_boxes_df = preprocess_boxes(train_boxes_df)
    print(train_boxes_df.head())
    #train_images_df = pd.read_csv('orig_alex_folds.csv')
    image_id_column = 'image_id'
    train_images_df = pd.read_csv('folds/train_alex_folds.csv')
    print(f'\nTotal images: {len(train_images_df[image_id_column].unique())}')

    # Leave only images with bboxes
    #print('Leave only train images with boxes (all)')
    img_list = train_boxes_df[image_id_column].unique()
    print(len(img_list))
    with_boxes_filter = train_images_df[image_id_column].isin(img_list)

    fold = 0
    # val images
    images_val = img_list
    #images_val = train_images_df.loc[
    #    (train_images_df['fold'] == fold) & with_boxes_filter, image_id_column].values
    print(f'\nValidation images {len(images_val)}')

    # get dataset
    valid_dataset = WheatDataset(
        image_ids=images_val[:16],
        image_dir=TRAIN_DIR,
        labels_df=train_boxes_df,
        #train_box_callback,
        transforms=get_valid_transforms(image_size),
        is_test=True)
    valid_data_loader = DataLoader(valid_dataset,
                                   batch_size=inf_batch_size,
                                   shuffle=False,
                                   num_workers=num_workers,
                                   collate_fn=collate_fn)

    # efficientdet config
    config = get_efficientdet_config(f'tf_efficientdet_d{model_name[-1]}')
    config.num_classes = 1
    config.image_size = image_size

    net = EfficientDet(config, pretrained_backbone=False)
    net.class_net = HeadNet(config,
                            num_outputs=config.num_classes,
                            norm_kwargs=dict(eps=.001, momentum=.01))

    weights_file = f'{experiment_name}.pth'

    if os.path.exists(weights_file):
        print(f'Loading weights from: {weights_file}')
        load_weights(net, weights_file)
    else:
        print(f'No {weights_file} checkpoint')
    model = DetBenchTrain(net, config)

    # get predictions
    manager = ModelRunner(model, device)
    true_boxes, pred_boxes, pred_scores = manager.predict(valid_data_loader)

    nms_thresholds = np.linspace(min_thres,
                                 max_thres,
                                 num=points,
                                 endpoint=False)
    best_metric = 0

    for thr in nms_thresholds:
        print('thr', thr)
        cur_metric = competition_metric(true_boxes, pred_boxes, pred_scores,
                                        thr)
        if cur_metric > best_metric:
            best_thr = thr
            best_metric = cur_metric
    print(f'best_metric: {best_metric}, best thr: {best_thr}')
Example #12
0
    print(f"lang: {LANG}",
          f"epoch: {epoch}",
          f"train_loss: {train_loss}",
          f"test_loss: {test_loss}",
          sep='\t')
    logs.append({"train": train_loss, "test": test_loss, "epoch": epoch})

    # if epoch % 1 == 0:
    #     liveloss.send()

    if epoch % 10 == 0:
        subprocess.call(["bash", "-c", "rm *{prediction,balanced.tsv}"])

    if epoch % 20 == 0:
        model_runner = ModelRunner(model, char2index, device)
        # model_runner.run_model_on_word("bare")
        datasets = build_datasets(model_runner,
                                  model_filename="turmodel_size_6_epoch_" +
                                  str(epoch))

        for task_fn in datasets:
            for hash in map(str, range(1)):
                with_agg_v_vals = (True, False)
                with_agg_v_vals = (False, )
                for with_agg_v in with_agg_v_vals:
                    probing_metainfo = dt_probe_dataset(task_fn,
                                                        hash + 'TREE' +
                                                        str(with_agg_v),
                                                        with_agg=with_agg_v,
                                                        tree=True)
Example #13
0
    def start_processing(cls, path_to_base_folder):

        start = time()

        Utilities.prepare_properties_dictionary()

        if not os.path.exists(
                os.path.join(
                    path_to_base_folder,
                    Utilities.get_prop_value(Utilities.BOOK_DESCRIPTOR_KEY))):
            print("Please provide the book descriptor file")
            return

        if not os.path.exists(
                os.path.join(path_to_base_folder,
                             Utilities.get_prop_value(
                                 Utilities.BOOK_REPO_KEY))):
            print("Please provide the book folder")
            return

        if not os.path.exists(
                os.path.join(
                    os.getcwd(),
                    Utilities.get_prop_value(Utilities.DATA_POINT_KEY))):
            data_start = time()
            DataPointSelector.select_datapoints(path_to_base_folder)
            data_end = time()

            print("Data Selection took : {} minutes".format(
                (data_end - data_start) / 60))
        else:
            print(
                "Data Point CSV found in directory, continuing to Feature Extraction"
            )

        if not os.path.exists(
                os.path.join(
                    os.getcwd(),
                    Utilities.get_prop_value(Utilities.PYTHON_FEATURE_CSV))):

            py_start = time()
            extractor = FeatureExtractor(
                base_folder_address=path_to_base_folder)
            extractor.extract_features()
            py_end = time()

            print("Python Extractor took : {} minutes".format(
                (py_end - py_start) / 60))
        else:
            print(
                "Python Feature Vector CSV found in directory, continuing to run Java project"
            )

        if not os.path.exists(
                os.path.join(
                    os.getcwd(),
                    Utilities.get_prop_value(Utilities.JAVA_FEATURE_CSV))):

            bat_file_name = r'command.bat'
            folder_path = os.path.join(
                path_to_base_folder,
                Utilities.get_prop_value(Utilities.BOOK_REPO_KEY))
            output_file_name = ".\\" + Utilities.get_prop_value(
                Utilities.JAVA_FEATURE_CSV)
            book_descriptor_file_name = ".\\" + Utilities.get_prop_value(
                Utilities.BOOK_DESCRIPTOR_KEY)
            data_points_file_name = ".\\" + Utilities.get_prop_value(
                Utilities.DATA_POINT_KEY)

            java_start = time()
            x = subprocess.call([
                bat_file_name, folder_path, output_file_name,
                book_descriptor_file_name, data_points_file_name
            ])
            java_end = time()

            print("Java Project took : {} minutes".format(
                (java_end - java_start) / 60))

        else:
            print(
                "Java output Feature Vector CSV found in directory, continuing to Model Runner"
            )

        runner = ModelRunner(path_to_base_folder)
        runner.drive_model_runner()

        end = time()
        total = end - start
        print("Total Time for the whole process : {} minutes".format(
            (end - start) / 60))
Example #14
0
class API:
    def __init__(self, port=80, threaded=True, debug=True):
        self.port = port
        self.threaded = threaded
        self.debug = debug
        self.app = Flask(__name__.split('.')[0])
        self.app.config['SECRET_KEY'] = str(
            UUID(int=random.randint(0, 10000000000)))
        self.app.add_url_rule('/',
                              'index',
                              self.index,
                              methods=['GET', 'POST'])
        self.app.add_url_rule('/players/<p1>/<p2>',
                              'players',
                              self.players,
                              methods=['GET', 'POST'])
        self.app.add_url_rule('/bets', 'bets', self.bets)
        self.app.add_url_rule('/rankings', 'rankings', self.rankings)
        self.app.add_url_rule('/recent', 'recent', self.recentMatches)
        helper.fillRegionDict()
        model = MLP(max_epochs=10000,
                    batch_size=128,
                    learning_rate=5e-3,
                    width=50,
                    layers=1)
        print('Model Created')
        self.runner = ModelRunner(model,
                                  "data/matchResults_aligulac.csv",
                                  trainRatio=0.8,
                                  testRatio=0.2,
                                  lastGameId="302054",
                                  keepPercent=1.0,
                                  decay=False)
        print(datetime.now(), 'Model Runner Created')
        print(self.runner.getLastId())
        self.runner.loadProfiles()
        self.runner.model.loadBackup()
        self.runner.clearMemory()
        print("Memory Cleared")

        rankingsList = self.runner.generateRanking(20)
        rank = 1
        print(
            "Rank, Name, Race, Country, Project W/R, Elo, Glicko, MatchExpAvg")
        for [rate, profile] in rankingsList:
            print(rank, profile.name, profile.race, profile.country, rate,
                  profile.elo, profile.glickoRating, profile.expOverall)
            rank += 1

        self.liveThread = threading.Thread(target=self.runner.getLive)
        self.liveThread.start()

    def start(self):
        http_server = WSGIServer(('', self.port), self.app)
        http_server.serve_forever()
        # self.app.run(debug=self.debug, port=self.port, threaded=self.threaded)

    def index(self):
        form = PlayersForm()
        if form.validate_on_submit():
            return redirect(
                url_for('players', p1=form.player1.data, p2=form.player2.data))
        elif request.method == 'GET':
            return render_template('index.html', form=form)

    def players(self, p1, p2):

        p1List = self.runner.profiles[p1.lower()]
        p2List = self.runner.profiles[p2.lower()]

        firstKeyPairs = [(i, str(p1List[i])) for i in range(len(p1List))]
        secondKeyPairs = [(i, str(p2List[i])) for i in range(len(p2List))]

        cform = ChooseForm()
        cform.choice1.choices = firstKeyPairs
        cform.choice2.choices = secondKeyPairs
        if request.method == 'POST':
            bestOf = cform.bo.data
            profile1 = p1List[int(cform.choice1.data)]
            profile2 = p2List[int(cform.choice2.data)]

            seriesPred = self.runner.predictSeries(player1=profile1.name,
                                                   p1Race=profile1.race,
                                                   p1Country=profile1.country,
                                                   player2=profile2.name,
                                                   p2Race=profile2.race,
                                                   p2Country=profile2.country,
                                                   bestOf=bestOf)

            tableList = []
            tableList.append(
                "<table><tr><th>Probability</th><th>Score</th><th>Score</th><th>Probability</th></tr>"
            )
            keySize = len(seriesPred[0].keys())
            numKeys = 0
            t1 = 0
            t2 = 0
            for key in sorted(seriesPred[0].keys(), reverse=True):
                numKeys += 2
                seriesPred[0][key] = seriesPred[0][key].item()
                t1 += seriesPred[0][key]
                backwardsKey = key[::-1]
                seriesPred[0][backwardsKey] = seriesPred[0][backwardsKey].item(
                )
                t2 += seriesPred[0][backwardsKey]
                tableList.append("<tr><td>")
                tableList.append("%.4f" % round(seriesPred[0][key], 4))
                tableList.append("</td>")
                tableList.append("<td>")
                tableList.append(key)
                tableList.append("</td>")
                tableList.append("<td>")
                tableList.append(backwardsKey)
                tableList.append("</td>")
                tableList.append("<td>")
                tableList.append("%.4f" %
                                 round(seriesPred[0][backwardsKey], 4))
                tableList.append("</td>")
                tableList.append("</tr>")
                if numKeys >= keySize:
                    break
            tableList.append("<tr><td>")
            tableList.append("%.4f" % round(t1, 4))
            tableList.append("</td>")
            tableList.append("<td>")
            tableList.append("Winner (")
            tableList.append(profile1.name)
            tableList.append(")</td><td>")
            tableList.append("Winner (")
            tableList.append(profile2.name)
            tableList.append(")</td>")
            tableList.append("<td>")
            tableList.append("%.4f" % round(t2, 4))
            tableList.append("</td></tr></table>")

            tableString = "".join(tableList)
            style = "<style>* {margin: 0;font-family: Arial, Helvetica, sans-serif;}table {font-family: arial, sans-serif;border-collapse: collapse;width: 100%;}td, th {border: 1px solid #dddddd;text-align: left;padding: 8px;}tr:nth-child(even) {background-color: #dddddd;}</style>"

            return "{6}<h2>Best of {4}: {0} {1} vs {3} {2}</h2><br><h3>{5}</h3>".format(
                profile1.name, "%.4f" % round(seriesPred[1].item(), 4),
                profile2.name, "%.4f" % round(seriesPred[2].item(), 4), bestOf,
                tableString, style)

        return render_template('players.html', form=cform)

    def bets(self):
        graph_url = ""
        try:
            graph_url = self.runner.graphBalance()
        except NoBetsYetExceptions:
            print("Not enough data points in balance history")
        return render_template("bets.html", graph=graph_url)

    def rankings(self):
        rankingsList = self.runner.generateRanking(20)
        ranks = []
        rates = []
        names = []
        races = []
        countries = []
        elos = []
        glickos = []

        rank = 1
        for [rate, profile] in rankingsList:
            ranks.append(rank)
            rates.append("%.4f" % round(rate, 4))
            names.append(profile.name)
            races.append(profile.race)
            countries.append(profile.country)
            elos.append("%.2f" % round(profile.elo, 2))
            glickos.append("%.2f" % round(profile.glickoRating, 2))
            rank += 1
        return render_template("rankings.html",
                               ranks=ranks,
                               rates=rates,
                               names=names,
                               races=races,
                               countries=countries,
                               elos=elos,
                               glickos=glickos)

    def recentMatches(self):
        matchList = reversed(self.runner.recentMatches)
        return render_template("recent.html", matches=matchList)
Example #15
0
from model_runner import ModelRunner

runner = ModelRunner()
runner.train_and_save()
runner.load_model()
runner.test()