from model_graph_cnn import build_graph elif model_tag == 'csm': from model_graph_csm import build_graph elif model_tag == 'rnn': from model_graph_rnn import build_graph elif model_tag == 'mlp': from model_graph_mlp import build_graph # # data dataset = Dataset() dataset.load_vocab_tokens_and_emb() # # config = ModelSettings() config.vocab = dataset.vocab config.model_tag = model_tag config.model_graph = build_graph config.is_train = False config.check_settings() # model = ModelWrapper(config) model.prepare_for_prediction() # text_raw = ["这本书不错"] """ work_book = xlrd.open_workbook(file_raw) data_sheet = work_book.sheets()[0] text_raw = data_sheet.col_values(0)
global_step = total_batch) # # if flag_stop: break # for epoch # # str_info = "training ended after total epoches: %d" % (epoch + 1) self._log_info(str_info) self._log_info("") # print(str_info) # print() # if __name__ == '__main__': sett = ModelSettings('vocab_placeholder', False) sett.model_tag = 'cnn' sett.check_settings() #print(dir(sett)) #l = [i for i in dir(sett) if inspect.isbuiltin(getattr(sett, i))] #l = [i for i in dir(sett) if inspect.isfunction(getattr(sett, i))] #l = [i for i in dir(sett) if not callable(getattr(sett, i))] print(sett.__dict__.keys()) print() model = ModelWrapper(sett)
help='restart') # return parser.parse_args() # if __name__ == '__main__': """ """ args = parse_args() # os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu # # settings settings = ModelSettings() settings.gpu_available = args.gpu # data if args.debug == 1: train_files = demo_data["train"] dev_files = demo_data["dev"] test_files = demo_data["test"] # settings.tokens_file = os.path.join(dir_vocab_demo, "vocab_tokens.txt") settings.base_dir = "../task_mrc_demo" # assign_paras_from_dict(settings, debug_paras) # else: train_files = data_all["train"]
# if model_tag.startswith('cnn'): from model_graph_cnn import ModelGraph elif model_tag.startswith('rnn'): from model_graph_rnn import ModelGraph elif model_tag.startswith('rnf'): from model_graph_rnf import ModelGraph elif model_tag.startswith('msa'): from model_graph_msa import ModelGraph elif model_tag.startswith('cap'): from model_graph_cap import ModelGraph else: assert False, "NOT supported model_tag" # # settings settings = ModelSettings() settings.gpu_available = args.gpu settings.model_tag = model_tag # if run_mode == 'predict': settings.is_train = False else: settings.is_train = True # settings.check_settings() settings.create_or_reset_log_file() settings.logger.info('running with args : {}'.format(args)) settings.logger.info(settings.trans_info_to_dict()) settings.save_to_json_file("./temp_settings.json") # # vocab