def __init__(self): super(TSN_BIT, self).__init__() self.tsn = TSN(num_class, num_segments=num_segments, modality=modality, base_model=arch, consensus_type=crop_fusion_type, dropout=0.7) self.activation = nn.LeakyReLU() self.fc1 = nn.Linear(101, 32) self.fc2 = nn.Linear(32, 8) self.model_name = 'TSN_TemResGen_Kalman_2019-03-11_15-28-57.pth' self._load_pretrained_model(self.model_name)
def __init__(self): super(TSN_BIT, self).__init__() self.tsn = TSN(num_class, num_segments=num_segments, modality=modality, base_model=arch, consensus_type=crop_fusion_type, dropout=0.7) self.activation = nn.LeakyReLU() self.fc1 = nn.Linear(51, 32) self.fc2 = nn.Linear(32, 21) self.model_name = 'TSN_RGB_2019-01-24_12-26-11.pth' self._load_pretrained_model(self.model_name)
def __init__(self): super(TSN_BIT, self).__init__() self.tsn = TSN(num_class, num_segments=num_segments, modality=modality, base_model=arch, consensus_type=crop_fusion_type, dropout=0.7) self.activation = nn.LeakyReLU() self.fc1 = nn.Linear(101, 32) self.fc2 = nn.Linear(32, 8) self.model_name = 'TSN_Flow_2019-01-23_17-06-15.pth' # self._load_tsn_rgb_weight() self._load_pretrained_model(self.model_name)