Example #1
0
    inputs = tf.placeholder(tf.float32, (None, model_config['doc_time_step'], model_config['input_dim']), name='input')
    query = tf.placeholder(tf.float32, (None, model_config['query_time_step'], model_config['input_dim']), name='question')
    labels = tf.placeholder(tf.float32, (None, model_config['n_entities']),name='labels')
    learning_rate = tf.placeholder(tf.float32, shape=[], name='learning_rate')
    keep_prob = tf.placeholder(tf.float32, name='dropout_prob')


    doc_var_list = [
                    ['d_attw',[2*model_config['ctx_lstm_size'], model_config['attention_mlp_hidden']]],
                    ['q_attw',[2*model_config['question_lstm_size'], model_config['attention_mlp_hidden']]],
                    ['wms',[model_config['attention_mlp_hidden'],1]],
                    ['w_rg',[2*model_config['ctx_lstm_size'], model_config['n_entities'] ]],
                    ['w_ug',[2*model_config['question_lstm_size'], model_config['n_entities'] ]]
                    ]
               
    doc_var = mut.create_var_xavier('Varibles',doc_var_list)#

    x = tf.unstack(inputs, model_config['doc_time_step'], 1)
    q = tf.unstack(query, model_config['query_time_step'], 1)

    with tf.variable_scope("query"):
        with tf.variable_scope("fw"):
            qlstm_fw_cell = tf.contrib.rnn.LSTMCell(model_config['question_lstm_size'], forget_bias=1.0)
            qlstm_fw_cell = tf.contrib.rnn.DropoutWrapper(qlstm_fw_cell, input_keep_prob=keep_prob)

        with tf.variable_scope("bw"):
            qlstm_bw_cell = tf.contrib.rnn.LSTMCell(model_config['question_lstm_size'], forget_bias=1.0)
            qlstm_bw_cell = tf.contrib.rnn.DropoutWrapper(qlstm_bw_cell, input_keep_prob=keep_prob)
        
        doc_net, fw, bw = rnn.static_bidirectional_rnn(qlstm_fw_cell, qlstm_bw_cell, q ,dtype=tf.float32)
        y_q = tf.concat([fw[-1], bw[-1]],1)#
Example #2
0
filename = "../../model/yolo_lsgan/fcann_v1.ckpt"
logfile = '../../log/yolo_lsgan'
graph_model = '../../model/yolo_lsgan/fcann_v1.ckpt-0.meta'
checkpoint_dir = '../../model/yolo_lsgan'

continue_training = 1
loop_num = 5500
d_loop_num = 3
batch_size = 64

keep_prob = tf.placeholder(tf.float32)
x = tf.placeholder(tf.float32, (None, 448, 448, 3))
label = tf.placeholder(tf.float32, (None, 1470))

yolo = YOLO_tiny_tf.YOLO_TF()
ds_yolo = mut.create_var_xavier('train', tmodel_var_list)
dis_var = mut.create_var_xavier('discriminator', discriminator_var)

theta_D = []
theta_G = []

for i in tmodel_var_list:
    theta_G.append(ds_yolo[i[0]])
for i in discriminator_var:
    theta_D.append(dis_var[i[0]])

##Train Phase
yolo_ds_train = nf.yolo_ds_all("yolo_train", x, ds_yolo, keep_prob, True)
d_real_logit, d_real_prob = nf.discriminator('discriminator', label, dis_var)
d_fake_logit, d_fake_prob = nf.discriminator('discriminator', yolo_ds_train,
                                             dis_var)
Example #3
0
save_epoch = 200
test_epoch = 500

modelTicket_G = {'root':'yolo_tiny', 'branch':'double_cut89'}
modelTicket_D = {'root':'discriminator', 'branch':'4layer'}


keep_prob = tf.placeholder(tf.float32)
x = tf.placeholder(tf.float32,(None,448,448,3))
test = tf.placeholder(tf.float32,(None,448,448,3))
label = tf.placeholder(tf.float32,(None,1470))

yolo = YOLO_tiny_tf.YOLO_TF()


gen_var = mut.create_var_xavier('train',mut.model_zoo(modelTicket_G))
dis_var = mut.create_var_xavier('discriminator', mut.model_zoo(modelTicket_D))

theta_D = []
theta_G = []

for i in mut.model_zoo(modelTicket_G):
    theta_G.append(gen_var[i[0]])
for i in mut.model_zoo(modelTicket_D):
    theta_D.append(dis_var[i[0]])


##Train Phase
yolo_ds_train = nf.yolo_dinception("yolo_train", x, gen_var, keep_prob, True)
lossTicket = {'loss':'L2norm'}
loss = mut.loss_zoo(lossTicket, yolo_ds_train, label)