Example #1
0
 def test_non_masked_self_attention(self):
     """Test with one input (self-attenntion) and no mask tensor."""
     test_layer = attention.MultiHeadAttention(num_heads=12, key_size=64)
     # Create a 3-dimensional input (the first dimension is implicit).
     query = tf.keras.Input(shape=(40, 80))
     output = test_layer([query, query])
     self.assertEqual(output.shape.as_list(), [None, 40, 80])
Example #2
0
 def test_initializer(self):
     """Test with a specified initializer."""
     test_layer = attention.MultiHeadAttention(
         num_heads=12,
         key_size=64,
         kernel_initializer=tf.keras.initializers.TruncatedNormal(
             stddev=0.02))
     # Create a 3-dimensional input (the first dimension is implicit).
     query = tf.keras.Input(shape=(40, 80))
     output = test_layer([query, query])
     self.assertEqual(output.shape.as_list(), [None, 40, 80])
Example #3
0
 def test_non_masked_attention(self, value_size, output_shape, output_dims):
     """Test that the attention layer can be created without a mask tensor."""
     test_layer = attention.MultiHeadAttention(num_heads=12,
                                               key_size=64,
                                               value_size=value_size,
                                               output_shape=output_shape)
     # Create a 3-dimensional input (the first dimension is implicit).
     query = tf.keras.Input(shape=(40, 80))
     value = tf.keras.Input(shape=(20, 80))
     output = test_layer([query, value])
     self.assertEqual(output.shape.as_list(), [None] + output_dims)
Example #4
0
    def test_masked_attention(self, use_bias):
        """Test with a mask tensor."""
        test_layer = attention.MultiHeadAttention(num_heads=2,
                                                  key_size=2,
                                                  use_bias=use_bias)
        # Create a 3-dimensional input (the first dimension is implicit).
        query = tf.keras.Input(shape=(4, 8))
        value = tf.keras.Input(shape=(2, 8))
        mask_tensor = tf.keras.Input(shape=(4, 2))
        output = test_layer([query, value], mask_tensor)

        # Create a model containing the test layer.
        model = tf.keras.Model([query, value, mask_tensor], output)

        # Generate data for the input (non-mask) tensors.
        from_data = 10 * np.random.random_sample((3, 4, 8))
        to_data = 10 * np.random.random_sample((3, 2, 8))

        # Invoke the data with a random set of mask data. This should mask at least
        # one element.
        mask_data = np.random.randint(2, size=(3, 4, 2))
        masked_output_data = model.predict([from_data, to_data, mask_data])

        # Invoke the same data, but with a null mask (where no elements are masked).
        null_mask_data = np.ones((3, 4, 2))
        unmasked_output_data = model.predict(
            [from_data, to_data, null_mask_data])

        # Because one data is masked and one is not, the outputs should not be the
        # same.
        self.assertNotAllClose(masked_output_data, unmasked_output_data)

        # Tests the layer with three inputs: Q, K, V.
        key = tf.keras.Input(shape=(2, 8))
        output = test_layer([query, value, key], mask_tensor)
        model = tf.keras.Model([query, value, key, mask_tensor], output)

        masked_output_data = model.predict(
            [from_data, to_data, to_data, mask_data])
        unmasked_output_data = model.predict(
            [from_data, to_data, to_data, null_mask_data])
        # Because one data is masked and one is not, the outputs should not be the
        # same.
        self.assertNotAllClose(masked_output_data, unmasked_output_data)

        if use_bias:
            self.assertLen(test_layer._query_dense.trainable_variables, 2)
            self.assertLen(test_layer._output_dense.trainable_variables, 2)
        else:
            self.assertLen(test_layer._query_dense.trainable_variables, 1)
            self.assertLen(test_layer._output_dense.trainable_variables, 1)
Example #5
0
  def build(self, input_shape):
    input_tensor = input_shape[0] if len(input_shape) == 2 else input_shape
    input_tensor_shape = tf.TensorShape(input_tensor)
    if len(input_tensor_shape) != 3:
      raise ValueError("TransformerLayer expects a three-dimensional input of "
                       "shape [batch, sequence, width].")
    batch_size, sequence_length, hidden_size = input_tensor_shape

    if len(input_shape) == 2:
      mask_tensor_shape = tf.TensorShape(input_shape[1])
      expected_mask_tensor_shape = tf.TensorShape(
          [batch_size, sequence_length, sequence_length])
      if not expected_mask_tensor_shape.is_compatible_with(mask_tensor_shape):
        raise ValueError("When passing a mask tensor to TransformerLayer, the "
                         "mask tensor must be of shape [batch, "
                         "sequence_length, sequence_length] (here %s). Got a "
                         "mask tensor of shape %s." %
                         (expected_mask_tensor_shape, mask_tensor_shape))
    if hidden_size % self._num_heads != 0:
      raise ValueError(
          "The input size (%d) is not a multiple of the number of attention "
          "heads (%d)" % (hidden_size, self._num_heads))
    self._attention_head_size = int(hidden_size // self._num_heads)

    self._attention_layer = attention.MultiHeadAttention(
        num_heads=self._num_heads,
        key_size=self._attention_head_size,
        dropout_rate=self._attention_dropout_rate,
        kernel_initializer=self._kernel_initializer,
        bias_initializer=self._bias_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
        bias_constraint=self._bias_constraint,
        name="self_attention")

    self._attention_dropout = tf.keras.layers.Dropout(rate=self._dropout_rate)
    # Use float32 in layernorm for numeric stability.
    # It is probably safe in mixed_float16, but we haven't validated this yet.
    self._attention_layer_norm = (
        tf.keras.layers.LayerNormalization(
            name="self_attention_layer_norm",
            axis=-1,
            epsilon=1e-12,
            dtype=tf.float32))
    self._intermediate_dense = dense_einsum.DenseEinsum(
        output_shape=self._intermediate_size,
        activation=None,
        kernel_initializer=self._kernel_initializer,
        bias_initializer=self._bias_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
        bias_constraint=self._bias_constraint,
        name="intermediate")
    self._intermediate_activation_layer = tf.keras.layers.Activation(
        self._intermediate_activation)
    self._output_dense = dense_einsum.DenseEinsum(
        output_shape=hidden_size,
        kernel_initializer=self._kernel_initializer,
        bias_initializer=self._bias_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
        bias_constraint=self._bias_constraint,
        name="output")
    self._output_dropout = tf.keras.layers.Dropout(rate=self._dropout_rate)
    # Use float32 in layernorm for numeric stability.
    self._output_layer_norm = tf.keras.layers.LayerNormalization(
        name="output_layer_norm", axis=-1, epsilon=1e-12, dtype=tf.float32)

    super(Transformer, self).build(input_shape)