def __init__(self, ts, data=0, weights=1.0):
     self.ts = ts
     self.weights = weights
     self.data = data
     self.calc = calc  #DAECalc.DAECalc("__PC12_MA__","__dPC12_MA__","__d2PC12_MA__")
     BaseModel.__init__(self,
                        len(ts) * 15, 91,
                        "PC12_MA")  #15 of 54 dVars, 91 Parameters
     self.calc.kwargs['max_steps'] = 5000
Example #2
0
 def __init__(self, N):
     BaseModel.__init__(self, N, N, "%i Parameter Exponential" % N)
 def __init__(self, weights):
     self.weights = weights
     BaseModel.__init__(self, 22, 70, "MMPrior")
 def __init__(self, x0=1, weights=25.0):
     self.x0 = x0
     self.weights = weights
     BaseModel.__init__(self, 70, 70, "LinearPrior")
 def __init__(self, x0):
     self.x0 = x0  # x0 contains the default values for the experiment
     BaseModel.__init__(self, 91, 70, "Expt")
 def __init__(self, ts, weights = 1.0):
     self.ts = ts
     self.weights = weights
     self.calc = calc #DAECalc.DAECalc("__PC12_MA__","__dPC12_MA__","__d2PC12_MA__")
     BaseModel.__init__(self,len(ts) * 54, 91, "PC12_MA") #54 (not 51) dVars, 91(21+70, not 21+64=85) Parameters
     self.calc.kwargs['max_steps']=5000