Example #1
0
 def __init__(self, model_path, lower_case=True):
     self.model_path = model_path
     self.tokenizer = BertTokenizer.from_pretrained(
         model_path, do_lower_case=lower_case)
     self.model = BertForQuestionAnswering.from_pretrained(model_path)
     #self.model.cuda()
     self.model.eval()
Example #2
0
	def __init__(self, model_path, lower_case = True):
		self.model_path = model_path
		self.tokenizer = BertTokenizer.from_pretrained(model_path, do_lower_case=lower_case)
		self.model = BertForQuestionAnswering.from_pretrained(model_path)
		self.device = torch.device("cuda")
		self.model.to(self.device)
		self.model.eval()
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--bert_model", default="bert-base-cased", type=str,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
                             "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
    parser.add_argument("--output_dir", default="/Users/lifuh/Documents/Research/squad2.0/output/", type=str,
                        help="The output directory where the model checkpoints and predictions will be written.")

    ## Other parameters
    parser.add_argument("--train_file", default="/Users/lifuh/Documents/Research/squad2.0/train-v2.0.json",
                        type=str, help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument("--predict_file", default="/Users/lifuh/Documents/Research/squad2.0/dev-v2.0.json", type=str,
                        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
    parser.add_argument("--do_train", default=False, action='store_true', help="Whether to run training.")
    parser.add_argument("--do_predict", default=True, action='store_true', help="Whether to run eval on the dev set.")

    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
    parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.")
    parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predictions.")
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion", default=0.1, type=float,
                        help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10% "
                             "of training.")
    parser.add_argument("--n_best_size", default=20, type=int,
                        help="The total number of n-best predictions to generate in the nbest_predictions.json "
                             "output file.")
    parser.add_argument("--max_answer_length", default=30, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")
    parser.add_argument("--verbose_logging", default=False, action='store_true',
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Whether to lower case the input text. True for uncased models, False for cased models.")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--fp16',
                        default=False,
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--null_score_diff_threshold',
                        type=float, default=0.0,
                        help="If null_score - best_non_null is greater than the threshold predict null.")

    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))

    args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_predict:
        raise ValueError("At least one of `do_train` or `do_predict` must be True.")

    if args.do_train:
        if not args.train_file:
            raise ValueError(
                "If `do_train` is True, then `train_file` must be specified.")
    if args.do_predict:
        if not args.predict_file:
            raise ValueError(
                "If `do_predict` is True, then `predict_file` must be specified.")

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        raise ValueError("Output directory () already exists and is not empty.")
    os.makedirs(args.output_dir, exist_ok=True)

    # initialize a tokenizer from a pretrained model
    tokenizer = BertTokenizer.from_pretrained(args.bert_model)

    train_examples = None
    num_train_steps = None
    if args.do_train:
        train_examples = read_squad_examples(
            input_file=args.train_file, is_training=True)
        num_train_steps = int(
            len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs)

    # Prepare model
    model = BertForQuestionAnswering.from_pretrained(args.bert_model,
                cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(args.local_rank))

    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())

    # hack to remove pooler, which is not used
    # thus it produce None grad that break apex
    param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]

    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]

    t_total = num_train_steps
    if args.local_rank != -1:
        t_total = t_total // torch.distributed.get_world_size()
    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=t_total)

    global_step = 0
    if args.do_train:
        cached_train_features_file = args.train_file+'_{0}_{1}_{2}_{3}'.format(
            args.bert_model, str(args.max_seq_length), str(args.doc_stride), str(args.max_query_length))
        train_features = None
        try:
            with open(cached_train_features_file, "rb") as reader:
                train_features = pickle.load(reader)
        except:
            train_features = convert_examples_to_features(
                examples=train_examples,
                tokenizer=tokenizer,
                max_seq_length=args.max_seq_length,
                doc_stride=args.doc_stride,
                max_query_length=args.max_query_length,
                is_training=True)
            if args.local_rank == -1 or torch.distributed.get_rank() == 0:
                logger.info("  Saving train features into cached file %s", cached_train_features_file)
                with open(cached_train_features_file, "wb") as writer:
                    pickle.dump(train_features, writer)
        logger.info("***** Running training *****")
        logger.info("  Num orig examples = %d", len(train_examples))
        logger.info("  Num split examples = %d", len(train_features))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long)
        all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long)
        all_is_impossibles = torch.tensor([int(f.is_impossible) for f in train_features], dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                   all_start_positions, all_end_positions, all_is_impossibles)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                if n_gpu == 1:
                    batch = tuple(t.to(device) for t in batch) # multi-gpu does scattering it-self
                input_ids, input_mask, segment_ids, start_positions, end_positions, _ = batch
                loss = model(input_ids, segment_ids, input_mask, start_positions, end_positions)
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    # modify learning rate with special warm up BERT uses
                    lr_this_step = args.learning_rate * warmup_linear(global_step/t_total, args.warmup_proportion)
                    for param_group in optimizer.param_groups:
                        param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

    # Save a trained model
    model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
    output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
    torch.save(model_to_save.state_dict(), output_model_file)

    # Load a trained model that you have fine-tuned
    model_state_dict = torch.load(output_model_file)
    model = BertForQuestionAnswering.from_pretrained(args.bert_model, state_dict=model_state_dict)
    model.to(device)

    if args.do_predict and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        eval_examples = read_squad_examples(
            input_file=args.predict_file, is_training=False)
        eval_features = convert_examples_to_features(
            examples=eval_examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=False)

        logger.info("***** Running predictions *****")
        logger.info("  Num orig examples = %d", len(eval_examples))
        logger.info("  Num split examples = %d", len(eval_features))
        logger.info("  Batch size = %d", args.predict_batch_size)

        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size)

        model.eval()
        all_results = []
        logger.info("Start evaluating")
        for input_ids, input_mask, segment_ids, example_indices in tqdm(eval_dataloader, desc="Evaluating"):
            if len(all_results) % 1000 == 0:
                logger.info("Processing example: %d" % (len(all_results)))
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            with torch.no_grad():
                batch_start_logits, batch_end_logits = model(input_ids, segment_ids, input_mask)
            for i, example_index in enumerate(example_indices):
                start_logits = batch_start_logits[i].detach().cpu().tolist()
                end_logits = batch_end_logits[i].detach().cpu().tolist()
                eval_feature = eval_features[example_index.item()]
                unique_id = int(eval_feature.unique_id)
                all_results.append(RawResult(unique_id=unique_id,
                                             start_logits=start_logits,
                                             end_logits=end_logits))
        output_prediction_file = os.path.join(args.output_dir, "predictions.json")
        output_nbest_file = os.path.join(args.output_dir, "nbest_predictions.json")
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds.json")
        write_predictions(eval_examples, eval_features, all_results,
                          args.n_best_size, args.max_answer_length,
                          args.do_lower_case, output_prediction_file,
                          output_nbest_file, output_null_log_odds_file, args.verbose_logging, True, args.null_score_diff_threshold)
Example #4
0
def main():
    parser = argparse.ArgumentParser()
    # # 必要参数
    parser.add_argument('--task',
                        default='multi',
                        type=str,
                        help='Task affecting load data and vectorize feature')
    parser.add_argument(
        '--loss_type',
        default='double',
        type=str,
        help='Select loss double or single, only for multi task'
    )  # 针对multi任务才有效
    parser.add_argument(
        "--bert_model",
        default="bert-base-uncased",
        type=str,
        help=
        "Bert pre-trained model selected in the list: bert-base-uncased,bert-large-uncased, "
        "bert-base-cased, bert-large-cased, bert-base-multilingual-uncased,bert-base-chinese,"
        "bert-base-multilingual-cased.")  # 选择预训练模型参数
    parser.add_argument("--debug",
                        default=False,
                        help="Whether run on small dataset")  # 正常情况下都应该选择false
    parser.add_argument(
        "--output_dir",
        default="./SQuAD/output/",
        type=str,
        help=
        "The output directory where the model checkpoints and predictions will be written."
    )

    # # 其他参数
    parser.add_argument("--train_file",
                        default="./SQuAD/version/train.json",
                        type=str,
                        help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument(
        "--predict_file",
        default="./SQuAD/version/prediction.json",
        type=str,
        help=
        "SQuAD json for predictio ns. E.g., dev-v1.1.json or test-v1.1.json")

    parser.add_argument(
        "--max_seq_length",
        default=384,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. Sequences "
        "longer than this will be truncated, and sequences shorter than this will be padded."
    )
    parser.add_argument(
        "--doc_stride",
        default=128,
        type=int,
        help=
        "When splitting up a long document into chunks, how much stride to take between chunks."
    )
    parser.add_argument(
        "--max_query_length",
        default=64,
        type=int,
        help=
        "The maximum number of tokens for the question. Questions longer than this will be "
        "truncated to this length.")

    # # 控制参数
    parser.add_argument("--do_train",
                        default=True,
                        help="Whether to run training.")
    parser.add_argument("--do_predict",
                        default=True,
                        help="Whether to run eval on the dev set.")

    parser.add_argument("--train_batch_size",
                        default=18,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--predict_batch_size",
                        default=18,
                        type=int,
                        help="Total batch size for predictions.")

    parser.add_argument("--learning_rate",
                        default=3e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for.")
    parser.add_argument(
        "--n_best_size",
        default=20,
        type=int,
        help=
        "The total number of n-best predictions to generate in the nbest_predictions.json file."
    )
    parser.add_argument(
        "--max_answer_length",
        default=30,
        type=int,
        help=
        "The maximum length of an answer that can be generated.This is needed because the start "
        "and end predictions are not conditioned on one another.")
    parser.add_argument(
        "--verbose_logging",
        default=False,
        help=
        "If true, all of the warnings related to data processing will be printed.A number of "
        "warnings are expected for a normal SQuAD evaluation.")
    parser.add_argument("--no_cuda",
                        default=False,
                        help="Whether not to use CUDA when available")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        "--do_lower_case",
        default=True,
        help=
        "Whether to lower case the input text. True for uncased models, False for cased models."
    )
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument(
        '--fp16',
        default=False,
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.Positive power of 2: static loss scaling value.\n"
    )
    parser.add_argument(
        '--version_2_with_negative',
        default=False,
        help=
        'If true, the SQuAD examples contain some that do not have an answer.')
    parser.add_argument(
        '--null_score_diff_threshold',
        type=float,
        default=0.0,
        help=
        "If null_score - best_non_null is greater than the threshold predict null."
    )
    args = parser.parse_args()

    # if是采用单机形式,else采用的是分布式形式;因为我们没有分布式系统,所以采用单机多GPU的方式进行训练10.24
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='hierarchical_copy')

    # 以下三句话的意义不是很大,基本操作这一部分是日志的输出形式10.24
    logging.basicConfig(
        format='%(asctime)s-%(levelname)s-%(name)s-%(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
    logger.info(
        "device:{}, n_gpu:{}, distributed training:{}, 16-bits training:{}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))
    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    # 以下几行均是用来设置参数10.24
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
    random.seed(args.seed)  # 设置随机种子
    np.random.seed(args.seed)  # 设置随机种子
    torch.manual_seed(args.seed)  # 为CPU设置种子用于生成随机数,以使得结果是确定的
    if n_gpu > 0:  # 如果使用多个GPU,应该使用torch.cuda.manual_seed_all()为所有的GPU设置种子
        torch.cuda.manual_seed_all(args.seed)

    # 以下三句又是基本操作,意义不大10.24
    if not args.do_train and not args.do_predict:
        raise ValueError(
            "At least one of `do_train` or `do_predict` must be True.")
    if args.do_train:
        if not args.train_file:
            raise ValueError(
                "If `do_train` is True, then `train_file` must be specified.")
    if args.do_predict:
        if not args.predict_file:
            raise ValueError(
                "If `do_predict` is True, then `predict_file` must be specified."
            )

    # 以下2句是用来判断output_dir是否存在,若不存在,则创建即可(感觉有这个东西反而不太好,因为需要空文件夹)10.24
    # if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
    #     raise ValueError("Output directory () already exists and is not empty.")
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    # 这个东西是用来干啥的(从tokenization中读取,对Tokenizer进行初始化操作)10.24
    tokenizer = BertTokenizer.from_pretrained(args.bert_model,
                                              do_lower_case=args.do_lower_case)

    # 从data中读取数据的方式,一种是单队列的读取方式,另一种是多通道读取方式10.24
    if args.task == 'squad':
        read_examples = read_squad_examples
    elif args.task == 'multi':
        read_examples = read_multi_examples

    # 用来加载训练样例以及优化的步骤10.24
    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = read_examples(
            input_file=args.train_file,
            is_training=True,
            version_2_with_negative=args.version_2_with_negative)
        if args.debug:
            train_examples = train_examples[:100]
        num_train_optimization_steps = \
            int(len(train_examples)/args.train_batch_size/args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
            )

    # 模型准备中ing10.24
    model = BertForQuestionAnswering.from_pretrained(
        args.bert_model,
        cache_dir=os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE),
                               'distributed_{}'.format(args.local_rank)))

    # model = torch.nn.DataParallel(model).cuda()
    # 判断是否使用float16编码10.24
    if args.fp16:
        # model.half().cuda()
        model.half()
        # 将模型加载到相应的CPU或者GPU中10.24
    model.to(device)

    # 配置优化器等函数10.24
    if args.do_train:
        param_optimizer = list(model.named_parameters())

        # hack to remove pooler, which is not used
        # thus it produce None grad that break apex
        param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]

        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]

        if args.fp16:
            try:
                # from apex.optimizers import FP16_Optimizer
                from apex.fp16_utils import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError(
                    "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training."
                )

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=True)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer,
                                           static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(
                warmup=args.warmup_proportion,
                t_total=num_train_optimization_steps)
        else:
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)

    # 进行模型的拟合训练10.24
    global_step = 0
    if args.do_train:
        # 训练语料的特征提取
        train_features = convert_examples_to_features(
            examples=train_examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=True)

        logger.info("***** Running training *****")
        logger.info("  Num orig examples = %d", len(train_examples))
        logger.info("  Num split examples = %d", len(train_features))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_start_positions = torch.tensor(
            [f.start_position for f in train_features], dtype=torch.long)
        all_end_positions = torch.tensor(
            [f.end_position for f in train_features], dtype=torch.long)
        all_start_vector = torch.tensor(
            [f.start_vector for f in train_features], dtype=torch.float)
        all_end_vector = torch.tensor([f.end_vector for f in train_features],
                                      dtype=torch.float)
        all_content_vector = torch.tensor(
            [f.content_vector for f in train_features], dtype=torch.float)

        # # 替换的内容all_start_positions以及all_end_positions
        # all1_start_positions = []
        # for i in range(len(train_features)):
        #     for j in range(len(train_features[i].start_position)):
        #         all1_start_positions.append(train_features[i].start_position[j])
        # all_start_positions = torch.tensor([k for k in all1_start_positions], dtype=torch.long)
        # all1_end_positions = []
        # for i in range(len(train_features)):
        #     for j in range(len(train_features[i].end_position)):
        #         all1_end_positions.append(train_features[i].end_position[j])
        # all_end_positions = torch.tensor([k for k in all1_end_positions], dtype=torch.long)
        # ####################################################################

        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_start_positions,
                                   all_end_positions, all_start_vector,
                                   all_end_vector, all_content_vector)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)  # 随机采样器
        else:
            train_sampler = DistributedSampler(train_data)

        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        model.train()
        for ep in trange(int(args.num_train_epochs), desc="Epoch"):
            # 每次都叫他进行分发,这样的话,就可以进行多GPU训练
            model = torch.nn.DataParallel(model).cuda()
            for step, batch in enumerate(
                    tqdm(train_dataloader,
                         desc="Iteration",
                         disable=args.local_rank not in [-1, 0])):

                if n_gpu == 1:
                    batch = tuple(
                        t.to(device)
                        for t in batch)  # multi-gpu does scattering it-self
                input_ids, input_mask, segment_ids, start_positions, end_positions, start_vector, end_vector, content_vector = batch

                loss = model(input_ids, segment_ids, input_mask,
                             start_positions, end_positions, start_vector,
                             end_vector, content_vector, args.loss_type)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                    print("loss率为:{}".format(loss))
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used and handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(
                            global_step, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

            print("\n")
            print(ep)
            output_model_file = os.path.join(args.output_dir,
                                             str(ep) + WEIGHTS_NAME)
            output_config_file = os.path.join(args.output_dir,
                                              str(ep) + CONFIG_NAME)

            torch.save(model.state_dict(), output_model_file)
            if isinstance(model, torch.nn.DataParallel):
                model = model.module
            model.config.to_json_file(output_config_file)
            tokenizer.save_vocabulary(args.output_dir)

    # 这个是用来加载进行微调调好后的代码以方便进行预测10.25
    if args.do_train and (args.local_rank == -1
                          or torch.distributed.get_rank() == 0):
        # Save a trained model, configuration and tokenizer
        model_to_save = model.module if hasattr(
            model, 'module') else model  # Only save the model it-self

        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)

        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
        tokenizer.save_vocabulary(args.output_dir)

        # Load a trained model and vocabulary that you have fine-tuned
        model = BertForQuestionAnswering.from_pretrained(args.output_dir)
        tokenizer = BertTokenizer.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)
    else:
        model = BertForQuestionAnswering.from_pretrained(args.output_dir)
        tokenizer = BertTokenizer.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)

    # 再次将GPU加入10.25
    model.to(device)

    # 这部分就是进行相应的预测(用于生成预测文件)
    if args.do_predict and (args.local_rank == -1
                            or torch.distributed.get_rank() == 0):
        eval_examples = \
            read_examples(input_file=args.predict_file, is_training=False, version_2_with_negative=args.version_2_with_negative)
        if args.debug:
            eval_examples = eval_examples[:100]
        eval_features = convert_examples_to_features(
            examples=eval_examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=False)

        logger.info("***** Running predictions *****")
        logger.info("  Num orig examples = %d", len(eval_examples))
        logger.info("  Num split examples = %d", len(eval_features))
        logger.info("  Batch size = %d", args.predict_batch_size)

        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_example_index = torch.arange(all_input_ids.size(0),
                                         dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_example_index)

        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.predict_batch_size)

        model.eval()
        all_results = []
        logger.info("Start evaluating")
        for input_ids, input_mask, segment_ids, example_indices in tqdm(
                eval_dataloader,
                desc="Evaluating",
                disable=args.local_rank not in [-1, 0]):
            if len(all_results) % 1000 == 0:
                logger.info("Processing example: %d" % (len(all_results)))
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            with torch.no_grad():
                batch_start_logits, batch_end_logits = model(
                    input_ids, segment_ids, input_mask)
            for i, example_index in enumerate(example_indices):
                start_logits = batch_start_logits[i].detach().cpu().tolist()
                end_logits = batch_end_logits[i].detach().cpu().tolist()
                eval_feature = eval_features[example_index.item()]
                unique_id = int(eval_feature.unique_id)
                all_results.append(
                    RawResult(unique_id=unique_id,
                              start_logits=start_logits,
                              end_logits=end_logits))

        middle_result = os.path.join(args.output_dir, 'middle_result.pkl')
        pickle.dump([eval_examples, eval_features, all_results],
                    open(middle_result, 'wb'))

        output_prediction_file = os.path.join(args.output_dir,
                                              "predictions.json")
        output_nbest_file = os.path.join(args.output_dir,
                                         "nbest_predictions.json")
        output_null_log_odds_file = os.path.join(args.output_dir,
                                                 "null_odds.json")

        if (args.loss_type == 'double'):
            write_predictions_couple_labeling(
                eval_examples, eval_features, all_results, args.n_best_size,
                args.max_answer_length, args.do_lower_case,
                output_prediction_file, output_nbest_file,
                output_null_log_odds_file, args.verbose_logging,
                args.version_2_with_negative, args.null_score_diff_threshold)
        elif (args.loss_type == 'single'):
            write_predictions_single_labeling(
                eval_examples, eval_features, all_results, args.n_best_size,
                args.max_answer_length, args.do_lower_case,
                output_prediction_file, output_nbest_file,
                output_null_log_odds_file, args.verbose_logging,
                args.version_2_with_negative, args.null_score_diff_threshold)
        elif (args.loss_type == 'origin') or (args.task == 'multi'
                                              and args.loss_type == 'squad'):
            write_predictions(eval_examples, eval_features, all_results,
                              args.n_best_size, args.max_answer_length,
                              args.do_lower_case, output_prediction_file,
                              output_nbest_file, output_null_log_odds_file,
                              args.verbose_logging,
                              args.version_2_with_negative,
                              args.null_score_diff_threshold)
        else:
            raise ValueError('{} dataset and {} loss is not support'.format(
                args.task, args.loss_type))
Example #5
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--bert_config_file", default=None, type=str, required=True,
                        help="The config json file corresponding to the pre-trained BERT model. "
                             "This specifies the model architecture.")
    parser.add_argument("--vocab_file", default=None, type=str, required=True,
                        help="The vocabulary file that the BERT model was trained on.")
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model checkpoints will be written.")

    ## Other parameters
    parser.add_argument("--train_file", default=None, type=str, help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument("--predict_file", default=None, type=str,
                        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
    parser.add_argument("--init_checkpoint", default=None, type=str,
                        help="Init from checkpoint")
    parser.add_argument("--init_full_model", default=None, type=str,
                        help="Initial full model")
    parser.add_argument("--do_lower_case", default=True, action='store_true',
                        help="Whether to lower case the input text. Should be True for uncased "
                             "models and False for cased models.")
    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
    parser.add_argument("--do_train", default=False, action='store_true', help="Whether to run training.")
    parser.add_argument("--do_predict", default=False, action='store_true', help="Whether to run eval on the dev set.")
    parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.")
    parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predictions.")
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion", default=0.0, type=float,
                        help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10% "
                             "of training.")
    parser.add_argument("--save_checkpoints_steps", default=2000, type=int,
                        help="How often to save the model checkpoint")
    parser.add_argument("--iterations_per_loop", default=1000, type=int,
                        help="How many steps to make in each estimator call.")
    parser.add_argument("--n_best_size", default=3, type=int,
                        help="The total number of n-best predictions to generate in the nbest_predictions.json "
                             "output file.")
    parser.add_argument("--max_answer_length", default=100, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")
    parser.add_argument("--use_history", default=False, action='store_true',
                        help="Use history features")
    parser.add_argument("--verbose_logging", default=False, action='store_true',
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument('--seed',
                        type=int,
                        default=1,
                        help="random seed for initialization")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--optimize_on_cpu',
                        default=False,
                        action='store_true',
                        help="Whether to perform optimization and keep the optimizer averages on CPU")
    parser.add_argument('--fp16',
                        default=False,
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
                        type=float, default=128,
                        help='Loss scaling, positive power of 2 values can improve fp16 convergence.')
    parser.add_argument('--dry_run',
                        action='store_true', default=False,
                        help='Don\'t load model, just load data')

    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
        if args.fp16:
            logger.info("16-bits training currently not supported in distributed training")
            args.fp16 = False # (see https://github.com/pytorch/pytorch/pull/13496)
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits trainiing: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))

    args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_predict:
        raise ValueError("At least one of `do_train` or `do_predict` must be True.")

    if args.do_train:
        if not args.train_file:
            raise ValueError(
                "If `do_train` is True, then `train_file` must be specified.")
    if args.do_predict:
        if not args.predict_file:
            raise ValueError(
                "If `do_predict` is True, then `predict_file` must be specified.")

    bert_config = BertConfig.from_json_file(args.bert_config_file)

    if args.max_seq_length > bert_config.max_position_embeddings:
        raise ValueError(
            "Cannot use sequence length %d because the BERT model "
            "was only trained up to sequence length %d" %
            (args.max_seq_length, bert_config.max_position_embeddings))

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        print("Warning: output directory () already exists and is not empty.")
    os.makedirs(args.output_dir, exist_ok=True)

    tokenizer = tokenization.FullTokenizer(
        vocab_file=args.vocab_file, do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_steps = None
    if args.do_train:
        train_examples = bdu.read_coqa_examples(
            input_file=args.train_file, is_training=True)
        real_train_example_len = sum(len(ex['questions']) for ex in train_examples)
        num_train_steps = int(
            real_train_example_len / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs)

    # Prepare model
    if not args.dry_run:
        if args.init_full_model is not None:
            model_state_dict = torch.load(args.init_full_model)
            model = BertForQuestionAnswering.from_pretrained(args.bert_model, state_dict=model_state_dict)
        else:
            model = BertForQuestionAnswering(bert_config, use_history=args.use_history)
            if args.init_checkpoint is not None:
                model.bert.load_state_dict(torch.load(args.init_checkpoint, map_location='cpu'))
        if args.fp16:
            model.half()
        model.to(device)
        if args.local_rank != -1:
            model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                              output_device=args.local_rank)
        elif n_gpu > 1:
            model = torch.nn.DataParallel(model)

        # Prepare optimizer
        if args.fp16:
            param_optimizer = [(n, param.clone().detach().to('cpu').float().requires_grad_()) \
                                for n, param in model.named_parameters()]
        elif args.optimize_on_cpu:
            param_optimizer = [(n, param.clone().detach().to('cpu').requires_grad_()) \
                                for n, param in model.named_parameters()]
        else:
            param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'gamma', 'beta']
        optimizer_grouped_parameters = [
            {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.01},
            {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0}
            ]
        optimizer = BERTAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_steps)

    global_step = 0
    if args.do_train:
        train_features = bdu.convert_coqa_examples_to_features(
            examples=train_examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=True)
        logger.info("***** Running training *****")
        logger.info("  Num orig examples = %d", real_train_example_len)
        logger.info("  Num split examples = %d", len(train_features))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long)
        all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long)
        all_f_history = torch.tensor([f.f_history for f in train_features], dtype=torch.uint8)
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                   all_start_positions, all_end_positions, all_f_history)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

        model.train()
        for epoch_i in trange(int(args.num_train_epochs), desc="Epoch"):
            running_loss = []
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                if n_gpu == 1:
                    batch = tuple(t.to(device) for t in batch) # multi-gpu does scattering it-self
                input_ids, input_mask, segment_ids, start_positions, end_positions, f_history = batch
                # Convert to float here.
                f_history_32 = f_history.float()
                loss = model(input_ids, segment_ids, input_mask,
                             start_positions=start_positions, end_positions=end_positions,
                             f_history=f_history_32,
                             debug=True)
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
                if args.fp16 and args.loss_scale != 1.0:
                    # rescale loss for fp16 training
                    # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
                    loss = loss * args.loss_scale
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                running_loss.append(loss.item())
                if step % 40 == 0:
                    logger.info("epoch {} step {}: avg loss {}".format(epoch_i, step, sum(running_loss) / len(running_loss)))
                    running_loss = []
                loss.backward()
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16 or args.optimize_on_cpu:
                        if args.fp16 and args.loss_scale != 1.0:
                            # scale down gradients for fp16 training
                            for param in model.parameters():
                                param.grad.data = param.grad.data / args.loss_scale
                        is_nan = set_optimizer_params_grad(param_optimizer, model.named_parameters(), test_nan=True)
                        if is_nan:
                            logger.info("FP16 TRAINING: Nan in gradients, reducing loss scaling")
                            args.loss_scale = args.loss_scale / 2
                            model.zero_grad()
                            continue
                        optimizer.step()
                        copy_optimizer_params_to_model(model.named_parameters(), param_optimizer)
                    else:
                        optimizer.step()
                    model.zero_grad()
                    global_step += 1
                if global_step % (args.save_checkpoints_steps // args.train_batch_size) == 0:
                    model_name = os.path.join(args.output_dir, 'model-{}.pth'.format(global_step))
                    # Save a trained model
                    model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
                    print("Step {}: saving model to {}".format(global_step, model_name))
                    torch.save(model_to_save.state_dict(), model_name)

        model_name = os.path.join(args.output_dir, 'model-{}.pth'.format(global_step))
        print("Step {}: saving model to {}".format(global_step, model_name))
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
        torch.save(model_to_save.state_dict(), model_name)

    if args.do_predict:
        eval_examples = bdu.read_coqa_examples(
            input_file=args.predict_file, is_training=False)
        eval_features = bdu.convert_coqa_examples_to_features(
            examples=eval_examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=False)

        logger.info("***** Running predictions *****")
        logger.info("  Num orig examples = %d", len(eval_examples))
        logger.info("  Num split examples = %d", len(eval_features))
        logger.info("  Batch size = %d", args.predict_batch_size)

        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
        all_f_history = torch.tensor([f.f_history for f in eval_features], dtype=torch.uint8)
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index, all_f_history)
        if args.local_rank == -1:
            eval_sampler = SequentialSampler(eval_data)
        else:
            eval_sampler = DistributedSampler(eval_data)
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size)

        model.eval()
        all_results = []
        logger.info("Start evaluating")
        for input_ids, input_mask, segment_ids, example_indices, f_history in tqdm(eval_dataloader, desc="Evaluating"):
            if len(all_results) % 1000 == 0:
                logger.info("Processing example: %d" % (len(all_results)))
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            f_history = f_history.to(device)
            with torch.no_grad(),:
                f_history_32 = f_history.float()
                batch_start_logits, batch_end_logits = model(input_ids, segment_ids, input_mask, f_history=f_history_32)
            for i, example_index in enumerate(example_indices):
                start_logits = batch_start_logits[i].detach().cpu().tolist()
                end_logits = batch_end_logits[i].detach().cpu().tolist()
                eval_feature = eval_features[example_index.item()]
                unique_id = int(eval_feature.unique_id)
                all_results.append(RawResult(unique_id=unique_id,
                                             coqa_id=eval_feature.coqa_id,
                                             turn_id=eval_feature.turn_id,
                                             start_logits=start_logits,
                                             end_logits=end_logits))
        output_prediction_file = os.path.join(args.output_dir, "predictions.json")
        output_nbest_file = os.path.join(args.output_dir, "nbest_predictions.json")
        bdu.write_predictions(eval_examples, eval_features, all_results,
                              args.n_best_size, args.max_answer_length,
                              args.do_lower_case, output_prediction_file,
                              output_nbest_file, args.verbose_logging)
Example #6
0
def load_model(bert_model, model_file, **kwargs):
    # Load a trained model that you have fine-tuned
    model_state_dict = torch.load(model_file)
    model = BertForQuestionAnswering.from_pretrained(
        bert_model, state_dict=model_state_dict, **kwargs)
    return model
Example #7
0
def init_params():
    model = BertForQuestionAnswering.from_pretrained("./bert_squad/")
    tokenizer = BertTokenizer.from_pretrained("./bert_squad/",
                                              do_lower_case=True)
    device = "cpu"
    model.to(device)
Example #8
0
    device = "cpu"
    model.to(device)


def question_answering(doc_text, question_text, model, tokenizer):
    example = compose_question(doc_text, question_text)
    predictions = predict_answer(example, model, tokenizer, top_n=3)
    results = []
    for p in predictions:
        results.append((p.text, str((p.start_logit + p.end_logit) / 2)))
    return results


def question_answering_terminal():
    doc_text = input('Input document String: ')
    question_text = input('Input question String: ')
    example = compose_question(doc_text, question_text)
    predictions = predict_answer(example, top_n=3)
    results = []
    for p in predictions:
        results.append((p.text, str((p.start_logit + p.end_logit) / 2)))
    return results


if __name__ == "__main__":
    model = BertForQuestionAnswering.from_pretrained("./bert_squad/")
    tokenizer = BertTokenizer.from_pretrained("./bert_squad/",
                                              do_lower_case=True)
    device = "cpu"
    model.to(device)
    print(question_answering_terminal())
Example #9
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--bert_model",
        default=None,
        type=str,
        required=True,
        help="Bert pre-trained model selected in the list: bert-base-uncased, "
        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model checkpoints and predictions will be written."
    )

    ## Other parameters
    parser.add_argument("--train_file",
                        default=None,
                        type=str,
                        help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument(
        "--predict_file",
        default=None,
        type=str,
        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json"
    )
    parser.add_argument(
        "--max_seq_length",
        default=384,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. Sequences "
        "longer than this will be truncated, and sequences shorter than this will be padded."
    )
    parser.add_argument(
        "--doc_stride",
        default=128,
        type=int,
        help=
        "When splitting up a long document into chunks, how much stride to take between chunks."
    )
    parser.add_argument(
        "--max_query_length",
        default=64,
        type=int,
        help=
        "The maximum number of tokens for the question. Questions longer than this will "
        "be truncated to this length.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_predict",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_evaluate",
                        action='store_true',
                        help="Whether to eval after training.")
    parser.add_argument("--train_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--predict_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for predictions.")
    parser.add_argument("--learning_rate",
                        default=3e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% "
        "of training.")
    parser.add_argument(
        "--n_best_size",
        default=20,
        type=int,
        help=
        "The total number of n-best predictions to generate in the nbest_predictions.json "
        "output file.")
    parser.add_argument(
        "--max_answer_length",
        default=30,
        type=int,
        help=
        "The maximum length of an answer that can be generated. This is needed because the start "
        "and end predictions are not conditioned on one another.")
    parser.add_argument(
        "--verbose_logging",
        action='store_true',
        help=
        "If true, all of the warnings related to data processing will be printed. "
        "A number of warnings are expected for a normal SQuAD evaluation.")
    parser.add_argument("--num_train_samples",
                        default=-1,
                        type=int,
                        help="Total number of training samples used.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help=
        "Whether to lower case the input text. True for uncased models, False for cased models."
    )
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--overwrite_output_dir',
                        action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument(
        '--version_2_with_negative',
        action='store_true',
        help=
        'If true, the SQuAD examples contain some that do not have an answer.')
    parser.add_argument(
        '--null_score_diff_threshold',
        type=float,
        default=0.0,
        help=
        "If null_score - best_non_null is greater than the threshold predict null."
    )
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--eval_period', type=int, default=2000)
    parser.add_argument('--wait_step', type=int, default=7)
    parser.add_argument('--load_from_cache',
                        action='store_true',
                        help="Load train features from cache.")
    parser.add_argument('--indiv_digits',
                        action='store_true',
                        help="Tokenize numbers into indiv digits.")
    parser.add_argument('--use_segment_ids',
                        action='store_true',
                        help="Use segment ids.")

    args = parser.parse_args()
    #print(args)

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')

    logging.basicConfig(
        format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".
        format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_predict:
        raise ValueError(
            "At least one of `do_train` or `do_predict` must be True.")

    if args.do_train:
        make_output_dir(
            args, scripts_to_save=[sys.argv[0], 'run_squad_dataset_utils.py'])
        if not args.train_file:
            raise ValueError(
                "If `do_train` is True, then `train_file` must be specified.")
    if args.do_predict:
        if not args.predict_file:
            raise ValueError(
                "If `do_predict` is True, then `predict_file` must be specified."
            )
        with open(args.predict_file, encoding='utf-8') as pf:
            dev_data = json.load(pf)["data"]

    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir
    ) and args.do_train and not args.overwrite_output_dir:
        raise ValueError(
            "Output directory () already exists and is not empty.")
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab
    if args.do_train:
        tokenizer = BertTokenizer.from_pretrained(
            args.bert_model, do_lower_case=args.do_lower_case)
        model = BertForQuestionAnswering.from_pretrained(args.bert_model)
    elif args.do_evaluate:
        # Load a trained model and vocabulary that you have fine-tuned
        model = BertForQuestionAnswering.from_pretrained(args.output_dir)
        tokenizer = BertTokenizer.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)

    if args.local_rank == 0:
        torch.distributed.barrier()

    model.to(device)
    if n_gpu > 1:
        model = torch.nn.DataParallel(model)

    if args.do_train:
        if args.local_rank in [-1, 0]:
            tb_writer = SummaryWriter(os.path.join(args.output_dir,
                                                   'log'))  # tensorboard
        # Prepare data loader
        train_examples = read_squad_examples(
            input_file=args.train_file,
            is_training=True,
            version_2_with_negative=args.version_2_with_negative,
            num_train_samples=args.num_train_samples)
        cached_train_features_file = args.train_file + '_{0}_{1}_{2}_{3}_{4}'.format(
            list(filter(None, args.bert_model.split('/'))).pop(),
            str(args.max_seq_length), str(args.doc_stride),
            str(args.max_query_length), str(args.num_train_samples))
        try:
            if args.load_from_cache:
                with open(cached_train_features_file, "rb") as reader:
                    train_features = pickle.load(reader)
            else:
                raise Exception
        except:
            train_features = convert_examples_to_features(
                examples=train_examples,
                tokenizer=tokenizer,
                max_seq_length=args.max_seq_length,
                doc_stride=args.doc_stride,
                max_query_length=args.max_query_length,
                is_training=True,
                indiv_digits=args.indiv_digits)
            if args.local_rank == -1:
                logger.info("  Saving train features into cached file %s",
                            cached_train_features_file)
                with open(cached_train_features_file, "wb") as writer:
                    pickle.dump(train_features, writer)

        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_start_positions = torch.tensor(
            [f.start_position for f in train_features], dtype=torch.long)
        all_end_positions = torch.tensor(
            [f.end_position for f in train_features], dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_start_positions,
                                   all_end_positions)
        train_sampler = RandomSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)
        num_train_optimization_steps = len(
            train_dataloader
        ) // args.gradient_accumulation_steps * args.num_train_epochs

        # Prepare optimizer
        param_optimizer = list(model.named_parameters())

        # hack to remove pooler, which is not used
        # thus it produce None grad that break apex
        param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]

        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [{
            'params': [
                p for n, p in param_optimizer
                if not any(nd in n for nd in no_decay)
            ],
            'weight_decay':
            0.01
        }, {
            'params':
            [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
            'weight_decay':
            0.0
        }]

        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

        logger.info("***** Running training *****")
        logger.info("  Num orig examples = %d", len(train_examples))
        logger.info("  Num split examples = %d", len(train_features))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)

    if args.do_predict and args.local_rank == -1:
        eval_examples = read_squad_examples(
            input_file=args.predict_file,
            is_training=False,
            version_2_with_negative=args.version_2_with_negative)
        eval_features = convert_examples_to_features(
            examples=eval_examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=False,
            indiv_digits=args.indiv_digits)

        logger.info("***** Running predictions *****")
        logger.info("  Num orig examples = %d", len(eval_examples))
        logger.info("  Num split examples = %d", len(eval_features))
        logger.info("  Batch size = %d", args.predict_batch_size)

        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_example_index = torch.arange(all_input_ids.size(0),
                                         dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_example_index)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.predict_batch_size)

    if args.do_train:
        best_f1 = 0
        wait_step = 0
        global_step = 0
        stop_training = False
        do_eval = False
        model.train()
        for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
            if stop_training:
                break
            for step, batch in enumerate(
                    tqdm(train_dataloader,
                         desc="Iteration",
                         disable=args.local_rank not in [-1, 0])):
                if n_gpu == 1:
                    batch = tuple(
                        t.to(device)
                        for t in batch)  # multi-gpu does scattering it-self
                input_ids, input_mask, segment_ids, start_positions, end_positions = batch
                segment_ids = segment_ids if args.use_segment_ids else None
                loss = model(input_ids, segment_ids, input_mask,
                             start_positions, end_positions)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                loss.backward()
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

                if global_step % args.eval_period == 0:
                    do_eval = True

                if do_eval:
                    do_eval = False
                    model.eval()
                    scores = predict(args, model, eval_examples, eval_features,
                                     eval_dataloader, dev_data, device)
                    em, f1 = scores['exact_match'], scores['f1']
                    logger.info("f1: %.3f, em: %.3f on epoch=%d" %
                                (f1, em, epoch))
                    print("f1: %.3f, em: %.3f on epoch=%d" % (f1, em, epoch))
                    if best_f1 < f1:
                        logger.info("Saving model with best f1: %.3f -> %.3f on epoch=%d" % \
                                (best_f1, f1, epoch))
                        save_model(args, model, tokenizer)
                        model.to(device)
                        best_f1 = f1
                        wait_step = 0
                        stop_training = False
                    else:
                        wait_step += 1
                        if best_f1 > 86 and wait_step == args.wait_step:
                            stop_training = True
                            break
                    model.train()
            # end of epoch
            do_eval = True

    elif args.do_evaluate:
        model.eval()
        scores = predict(args, model, eval_examples, eval_features,
                         eval_dataloader, dev_data, device, True)
        em, f1 = scores['exact_match'], scores['f1']
        print("f1: %.3f, em: %.3f" % (f1, em))