def __init__(self): super().__init__() MUS = [-0.9, -0.7, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0] SIGMAS = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.001] self.bert_ranker = VanillaBertRanker() self.simmat = modeling_util.SimmatModule() self.kernels = modeling_util.KNRMRbfKernelBank(MUS, SIGMAS) self.combine = torch.nn.Linear(self.kernels.count() * self.CHANNELS + self.BERT_SIZE, 1)
def __init__(self): super().__init__() ## KNRM MUS = [-0.9, -0.7, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0] SIGMAS = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.001] self.kernels = modeling_util.KNRMRbfKernelBank(MUS, SIGMAS) #self.batchnorm = torch.nn.BatchNorm1d(self.kernels.count()*self.CHANNELS) self.combine = torch.nn.Linear(self.kernels.count() * self.CHANNELS, 1) #self.dropout_two = torch.nn.Dropout(0.1).to('cuda:0') self.simmat = modeling_util.SimmatModule()
def __init__(self, config_path): super().__init__(config_path) # MUS,SIGMAS = modeling_util.init_kernels(21) MUS = [-0.9, -0.7, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0] SIGMAS = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.001] self.simmat = modeling_util.SimmatModule() self.kernels = modeling_util.KNRMRbfKernelBank(MUS, SIGMAS) self.combine = torch.nn.Linear(self.kernels.count(), 1) #
def __init__(self,QLEN): super().__init__(QLEN) MUS,SIGMAS = modeling_util.init_kernels(21) #MUS = [-0.9, -0.7, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0] #SIGMAS = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.001] # self.bert_ranker = VanillaBertRanker() self.simmat = modeling_util.SimmatModule() self.kernels = modeling_util.KNRMRbfKernelBank(MUS, SIGMAS) self.combine = torch.nn.Linear(self.kernels.count() * self.CHANNELS, 1)