Example #1
0
def test_DetectorEfficiency_cancel():
    # We need some lines
    L1 = LorentzianLine("Lorentzian1", (-5.0, 5.0),
                        x0=0.0,
                        width=0.4,
                        c=0.0,
                        weight=2)
    L2 = LorentzianLine(name="Lorentzian2",
                        domain=(-5.0, 5.0),
                        x0=-1.0,
                        width=0.4,
                        c=0.02,
                        weight=1)
    # Contruct a SqE model
    sqe = SqE(lines=(L1, L2), lam=6.0, dlam=0.12, lSD=3.43, T=20)
    new_domain = (-1 * energy_from_lambda(6.0), UPPER_INTEGRATION_LIMIT)
    sqe.update_domain(new_domain)
    # init energycutoff
    decf = DetectorEfficiencyCorrectionFactor(sqe, ne=10, nlam=5)

    ee, ll = energy_lambda_nrange(15.0, 6.0, 0.12, 10000, 20)

    #    print(detector_efficiency(ee, ll, 1) * decf(ee, ll))
    print(
        trapz(trapz(decf(ee, ll) * decf.legacy_calc(ee, ll, 0), ee, axis=0),
              ll[0]))
    #    print(trapz(trapz(ones(ll.shape), ee, axis=0), ll[0]))
    print(trapz(trapz(decf.legacy_calc(ee, ll, 1), ee, axis=0), ll[0]))
    print(trapz(trapz(decf.legacy_calc(ee, ll, 0), ee, axis=0), ll[0]))
    print(
        trapz(
            trapz(decf.legacy_calc(ee, ll, 0), ee, axis=0) /
            trapz(trapz(decf.legacy_calc(ee, ll, 1), ee, axis=0), ll[0]),
            ll[0]))
Example #2
0
def test_export_load():
    # We need some lines
    L1 = LorentzianLine("Lorentzian1", (-5.0, 5.0),
                        x0=0.0,
                        width=0.4,
                        c=0.0,
                        weight=2)
    L2 = LorentzianLine(name="Lorentzian2",
                        domain=(-5.0, 5.0),
                        x0=-1.0,
                        width=0.4,
                        c=0.02,
                        weight=1)
    # Contruct a SqE model
    sqe = SqE(lines=(L1, L2), lam=6.0, dlam=0.12, lSD=3.43, T=20)
    new_domain = (-1 * energy_from_lambda(6.0), UPPER_INTEGRATION_LIMIT)
    sqe.update_domain(new_domain)
    # init energycutoff
    decf = DetectorEfficiencyCorrectionFactor(sqe, ne=10000, nlam=20)

    # exports
    corrdict = decf.export_to_dict()
    decf.export_to_jsonfile(
        f"{testdir}/resources/test_correction_export_load_file.json")

    # loading
    decf_from_dict = decf.load_from_dict(**corrdict)
    print(decf_from_dict.export_to_dict())
    print("", "Loading successful: ", decf, decf_from_dict, sep='\n')
    decf_from_jsonfile = decf.load_from_jsonfile(
        f"{testdir}/resources/test_correction_export_load_file.json")
    print("Loading successful: ", decf, decf_from_jsonfile, sep='\n')
def test_transformer_init():
    ### Creating a SqE model for transformation
    # We need some lines
    L1 = LorentzianLine("Lorentzian1", (-5.0, 5.0),
                        x0=0.0,
                        width=0.4,
                        c=0.0,
                        weight=2)
    L2 = LorentzianLine(name="Lorentzian2",
                        domain=(-5.0, 5.0),
                        x0=-1.0,
                        width=0.4,
                        c=0.0,
                        weight=1)
    L3 = F_ILine("FI1", (-energy_from_lambda(6.0), 15),
                 x0=-0.1,
                 width=0.008,
                 A=350.0,
                 q=0.02,
                 kappa=0.01,
                 c=0.0,
                 weight=1)
    # Contruct a SqE model
    sqe1 = SqE(lines=(L2, ), lam=6.0, dlam=0.12, lSD=3.43, T=20)
    sqe2 = SqE(lines=(L1, L2, L3), lam=6.0, dlam=0.12, lSD=3.43, T=20)

    ### Instantiate a transformer
    SqtTransformer(sqe2, nlam=20, ne=10000)
Example #4
0
def test_sqe_normalization():
    # We need some lines
    L1 = LorentzianLine("Lorentzian1", (-5.0, 5.0),
                        x0=0.0,
                        width=0.4,
                        c=0.0,
                        weight=2)
    L2 = LorentzianLine(name="Lorentzian2",
                        domain=(-5.0, 5.0),
                        x0=-1.0,
                        width=0.4,
                        c=0.02,
                        weight=1)
    # Contruct a SqE model
    sqe = SqE(lines=(L1, L2), lam=6.0, dlam=0.12, l_SD=3.43, T=20)
    new_domain = (-1 * energy_from_lambda(6.0), UPPER_INTEGRATION_LIMIT)
    sqe.update_domain(new_domain)

    # integrate over domain
    from scipy.integrate import quad

    to_integrate = lambda x: sqe(x)
    valdom, errdom = quad(to_integrate, *new_domain)
    valover, errover = quad(to_integrate, -15, 20)
    print(
        f"Integration value over domain from {new_domain[0]:.5f} to {UPPER_INTEGRATION_LIMIT}: {valdom:.5f} +- {errdom:.5f}"
    )  #   |   normalization factor: {n:.5f}")
    print(
        f"Integration value beyond domain from -15.0 to 20.0: {valover:.5f} +- {errover:.5f}"
    )
Example #5
0
def test_from_sqe():
    # We need some lines
    L1 = LorentzianLine("Lorentzian1", (-5.0, 5.0),
                        x0=0.0,
                        width=0.4,
                        c=0.0,
                        weight=2)
    L2 = LorentzianLine(name="Lorentzian2",
                        domain=(-5.0, 5.0),
                        x0=-1.0,
                        width=0.4,
                        c=0.0,
                        weight=1)
    L1g = LorentzianLine("Lorentzian1g", (-5.0, 5.0),
                         x0=0.0,
                         width=0.5,
                         c=0.0,
                         weight=1)
    L2g = LorentzianLine(name="Lorentzian2g",
                         domain=(-5.0, 5.0),
                         x0=-1.5,
                         width=0.3,
                         c=0.0,
                         weight=1)
    # Contruct a SqE model
    sqe1 = SqE((L1, L2), lam=6.0, dlam=0.12, lSD=3.43, T=20)
    sqe1g = SqE((L1g, L2g), lam=6.0, dlam=0.12, lSD=3.43, T=20)

    # Create some data and a Minuit obj from sqe
    x = linspace(-5, 5, 26)
    y = sqe1(x) * 1000
    yerr = y**0.5
    y += random.randn(len(x)) * yerr
    m = FitModelCreator.from_sqe(sqe1, x, y / 1000, yerr / 1000,
                                 [0.5, 0.0, 1.7, -1.5, 0.3, 0.0, 1])

    fmin, res = m.migrad()
    # print(fmin)
    # print(res)

    dL1res = {
        "x0": 0.0,
        "width": res[0].value,
        "c": res[1].value,
        "weight": res[2].value
    }
    dL2res = {
        "x0": res[3].value,
        "width": res[4].value,
        "c": res[5].value,
        "weight": res[6].value
    }

    L1res = LorentzianLine(name="Lorentzian1res", domain=(-5.0, 5.0), **dL1res)
    L2res = LorentzianLine(name="Lorentzian2res", domain=(-5.0, 5.0), **dL2res)
    sqe1res = SqE((L1res, L2res), lam=6.0, dlam=0.12, lSD=3.43, T=20)
Example #6
0
def test_transformer_init():
    ### Creating a SqE model for transformation
    # We need some lines
    L1 = LorentzianLine("Lorentzian1", (-5.0, 5.0), x0=0.0, width=0.4, c=0.0, weight=2)
    L2 = LorentzianLine(name="Lorentzian2", domain=(-5.0, 5.0), x0=-1.0, width=0.4, c=0.0, weight=1)
    # Contruct a SqE model
    sqe1 = SqE(lines=(L2,), lam=6.0, dlam=0.12, l_SD=3.43, T=20)
    SqE(lines=(L1, L2), lam=6.0, dlam=0.12, l_SD=3.43, T=20)

    ### Instantiate a transformer
    SqtTransformer(sqe1, n_lam=20, n_e=10000)
Example #7
0
def test_update_params():
    # We need some lines
    L1 = LorentzianLine("Lorentzian1", (-5.0, 5.0),
                        x0=0.0,
                        width=0.4,
                        c=0.0,
                        weight=2)
    L2 = LorentzianLine(name="Lorentzian2",
                        domain=(-5.0, 5.0),
                        x0=-1.0,
                        width=0.4,
                        c=0.02,
                        weight=1)
    # Contruct a SqE model
    sqe = SqE(lines=(L1, L2), lam=6.0, dlam=0.12, lSD=3.43, T=20)
    # init energycutoff
    decf = DetectorEfficiencyCorrectionFactor(sqe, ne=10000, nlam=20)
    pprint(decf.export_to_dict())
    tdict = dict(T=30,
                 lam=8.0,
                 x0_Lorentzian2=-0.5,
                 weight_Lorentzian1=5,
                 nlam=55)
    decf.update_params(**tdict)
    pprint(decf.export_to_dict())
Example #8
0
def test_EnergyCutOffCorrectionFactor_vs_arg():
    # We need some lines
    L1 = LorentzianLine(name="Lorentzian1",
                        domain=(-16.0, 16.0),
                        x0=-1.0,
                        width=0.4,
                        c=0.0,
                        weight=1)
    # Contruct a SqE model
    sqe = SqE(lines=(L1, ), lam=6.0, dlam=0.12, lSD=3.43, T=20)
    # Instantiate a energy cutoff corr factor
    eccf = EnergyCutOffCorrectionFactor(sqe)

    ne = 15000
    nlam = 20
    lam = 6.0 * linspace(1 - 0.12 * 1.01, 1 + 0.12 * 1.01, nlam)
    lams = tile(lam, (ne, 1))

    a = -0.99999 * energy_from_lambda(lam)
    b = 15.0 + a
    es = linspace(a, b, ne)

    test_eccf_vals = arg.CutFac_Eint(arg.lorentzian, -1.0, 0.4, 15000, 20, 6.0,
                                     0.12, 1, 0.0, 1.0, 20, 0.5, 0.00001, 350.)

    eccf_vals = eccf.correction(es, lams)

    #    print(test_eccf_vals.shape)
    print(test_eccf_vals)

    #    print(eccf_vals.shape)
    print(eccf_vals)
Example #9
0
def test_correctionFactor_dimensionality():
    # We need some lines
    L1 = LorentzianLine(name="Lorentzian1",
                        domain=(-16.0, 16.0),
                        x0=-1.0,
                        width=0.4,
                        c=0.0,
                        weight=1)
    # Contruct a SqE model
    sqe = SqE(lines=(L1, ), lam=6.0, dlam=0.12, lSD=3.43, T=20)
    # Instantiate a detector efficiency corr factor
    decf = DetectorEfficiencyCorrectionFactor(sqe)
    # Instantiate a energy cutoff corr factor
    eccf = EnergyCutOffCorrectionFactor(sqe)

    ne = 15
    nlam = 5
    lam = 6.0 * linspace(1 - 0.12 * 1.01, 1 + 0.12 * 1.01, nlam)
    lams = tile(lam, (ne, 1))

    a = -0.99999 * energy_from_lambda(lam)
    b = 15.0 + a
    es = linspace(a, b, ne)

    print(lams)
    print(es)
    print(decf.calc(es, lams))
    print(eccf.calc(es, lams))
def test_export_load():
    ### Creating a SqE model for transformation
    # We need some lines
    L1 = LorentzianLine("Lorentzian1", (-5.0, 5.0),
                        x0=0.0,
                        width=0.00005,
                        c=0.0,
                        weight=0.1)
    L2 = F_ILine("FI1", (-energy_from_lambda(6.0), 15),
                 x0=-0.01,
                 width=0.008,
                 A=350.0,
                 q=0.02,
                 kappa=0.01,
                 c=0.0,
                 weight=0.9)
    # Contruct a SqE model
    sqe = SqE(lines=(L1, L2), lam=6.0, dlam=0.12, lSD=3.43, T=628)
    # Add the detector efficiency correction
    decf = DetectorEfficiencyCorrectionFactor(sqe, ne=500, nlam=20)
    # Add the energycutoff correction
    eccf = EnergyCutOffCorrectionFactor(sqe, ne=500, nlam=20)

    ### Instantiate a transformer
    sqt = SqtTransformer(sqe,
                         corrections=(decf, eccf),
                         nlam=20,
                         ne=500,
                         lSD=3.43,
                         integ_mode="adaptive")

    ### Export
    sqt_dict = sqt.export_to_dict()
    pprint(sqt_dict["corrections"])
    sqt.export_to_jsonfile(
        f"{testdir}/resources/test_transformer_export_load_file.json")
    print("",
          "SqE's of the: ",
          f"- sqe: {sqe}",
          f"- decf: {decf.sqe}",
          f"- eccf: {eccf.sqe}",
          f"- sqt: {sqt.sqemodel}",
          sep="\n")

    ### Loading
    sqt_from_dict = sqt.load_from_dict(**sqt_dict)
    print("", "Loading successful: ", sqt, sqt_from_dict, sep='\n')
    sqt_from_file = sqt.load_from_jsonfile(
        f"{testdir}/resources/test_transformer_export_load_file.json")
    print("Loading successful: ", sqt, sqt_from_file, sep='\n')
    print("",
          "SqE's of the: ",
          f"- sqe: {sqe}",
          f"- decf: {sqt_from_dict.corrections[0].sqe}",
          f"- eccf: {sqt_from_dict.corrections[1].sqe}",
          f"- sqt: {sqt_from_dict.sqemodel}",
          sep="\n")

    print("\n\nThis is the sqt loaded from dict")
    pprint(sqt_from_file.export_to_dict())
Example #11
0
def test_DetectorEfficiencyCorrectionFactor_compare_with_arg():
    # We need some lines
    L1 = LorentzianLine(name="Lorentzian1",
                        domain=(-16.0, 16.0),
                        x0=-1.0,
                        width=0.4,
                        c=0.0,
                        weight=1)
    # Contruct a SqE model
    sqe = SqE(lines=(L1, ), lam=6.0, dlam=0.12, lSD=3.43, T=20)
    # Instantiate a detector efficiency corr factor
    decf = DetectorEfficiencyCorrectionFactor(sqe)

    ne = 15000
    nlam = 20
    lam = 6.0 * linspace(1 - 0.12 * 1.01, 1 + 0.12 * 1.01, nlam)
    lams = tile(lam, (ne, 1))

    a = -0.99999 * energy_from_lambda(lam)
    b = 15.0 + a
    es = linspace(a, b, ne)

    test_decf_val = arg.DetFac_Eint_lamInt(arg.fqe_I, -1.0, 0.4, 15000, 20,
                                           6.0, 0.12, 1, 0.0, 1.0, 20, 0.5,
                                           0.00001, 350.)
    decf_val_man_int = decf(es, lams)
    decf_val = decf.correction(es, lams)
    print("arg res: ", test_decf_val)
    print("class calc res manualy integrated: ", decf_val_man_int)
    print("class res: ", decf_val)
Example #12
0
    def load_from_dict(cls, **transformer_dict):
        """

        """
        params = transformer_dict["params"]
        sqemodel = SqE.load_from_dict(**transformer_dict["sqemodel"])
        corrections = tuple([
            CorrectionFactor.load_from_dict(**cdict)
            for cdict in transformer_dict["corrections"]
        ])
        return cls(sqemodel, corrections, **params)
Example #13
0
def test_from_Minuit_and_adjust_it():
    ### Creating a SqE model for transformation
    # We need some lines
    L1 = LorentzianLine("Lorentzian1", (-5.0, 5.0),
                        x0=0.0,
                        width=0.4,
                        c=0.0,
                        weight=1)
    L2 = LorentzianLine(name="Lorentzian2",
                        domain=(-5.0, 5.0),
                        x0=1.5,
                        width=0.4,
                        c=0.0,
                        weight=2)
    # Contruct a SqE model
    sqe1 = SqE((L1, L2), lam=6.0, dlam=0.12, lSD=3.43, T=20)

    ### Instantiate a transformer
    sqt1 = SqtTransformer(
        sqe1,
        corrections=(
        ),  #(DetectorEfficiencyCorrectionFactor(sqe1, ne=15000, nlam=20),),
        ne=10000,
        nlam=20,
        lSD=3.43)

    ### Values for transformation
    datataus = array([
        2.0e-6, 6.0e-6, 4.1e-5, 2.5e-4, 5.5e-4, 1.0e-3, 1.32e-3, 1.7e-3,
        2.2e-3, 2.63e-3, 2.77e-3, 3.3e-3, 4.27e-3, 5.11e-3, 6.77e-3, 8.96e-3,
        2.0e-2
    ])
    x = MIEZE_DeltaFreq_from_time(datataus * 1.0e-9, 3.43, 6.0)

    ### create artificial data via TRANSFORM!!
    y = array([sqt1(freq) for freq in x])
    yerr = 0.02 * random.randn(len(y))

    ### initialize Minuits!
    m = FitModelCreator.from_transformer(sqt1, x, y + yerr, yerr,
                                         [0.45, 0.0, 1.2, -1.5, 0.3, 0.0, 2.2])
    m.fixed["c_Lorentzian1"] = True
    m.fixed["c_Lorentzian2"] = True

    # Adjust fit behavior -> reinitialize another Minuit obj
    m2 = FitModelCreator.from_Minuit(minuitobj=m,
                                     limit_weight_Lorentzian1=(0, None),
                                     limit_width_Lorentzian1=(0, None),
                                     limit_weight_Lorentzian2=(0, None),
                                     limit_width_Lorentzian2=(0, None),
                                     fix_c_Lorentzian1=True,
                                     fix_c_Lorentzian2=True)
Example #14
0
def test_from_transformer():
    ### Creating a SqE model for transformation
    # We need some lines
    L1 = LorentzianLine("Lorentzian1", (-5.0, 5.0),
                        x0=0.0,
                        width=0.4,
                        c=0.0,
                        weight=1)
    L2 = LorentzianLine(name="Lorentzian2",
                        domain=(-5.0, 5.0),
                        x0=1.5,
                        width=0.4,
                        c=0.0,
                        weight=2)
    L3 = F_ILine("FI1", (-energy_from_lambda(6.0), 15),
                 x0=-0.1,
                 width=0.008,
                 A=350.0,
                 q=0.02,
                 kappa=0.01,
                 c=0.0,
                 weight=1)
    # Contruct a SqE model
    sqe1 = SqE((L1, L2, L3), lam=6.0, dlam=0.12, lSD=3.43, T=20)

    ### Instantiate a transformer
    sqt1 = SqtTransformer(sqe1,
                          corrections=(DetectorEfficiencyCorrectionFactor(
                              sqe1, ne=10000, nlam=20), ),
                          ne=10000,
                          nlam=20,
                          lSD=3.43)

    ### Values for transformation
    datataus = array([
        2.0e-6, 6.0e-6, 4.1e-5, 2.5e-4, 5.5e-4, 1.0e-3, 1.32e-3, 1.7e-3,
        2.2e-3, 2.63e-3, 2.77e-3, 3.3e-3, 4.27e-3, 5.11e-3, 6.77e-3, 8.96e-3,
        2.0e-2
    ])
    x = MIEZE_DeltaFreq_from_time(datataus * 1.0e-9, 3.43, 6.0)

    ### create artificial data via TRANSFORM!!
    y = array([sqt1(freq) for freq in x])
    yerr = 0.02 * random.randn(len(y))

    ### instntiate Minuit obj!
    m = FitModelCreator.from_transformer(sqt1, x, y + yerr, yerr, [
        0.45, 0.0, 1.2, -1.5, 0.3, 0.0, 2.2, -0.5, 0.01, 350.0, 0.02, 0.01,
        0.0, 1.0
    ])
def test_update_params():
    ### Creating a SqE model for transformation
    # We need some lines
    L1 = LorentzianLine("Lorentzian1", (-5.0, 5.0),
                        x0=0.0,
                        width=0.4,
                        c=0.0,
                        weight=2)
    L2 = LorentzianLine(name="Lorentzian2",
                        domain=(-5.0, 5.0),
                        x0=-1.0,
                        width=0.4,
                        c=0.0,
                        weight=1)
    L3 = F_ILine("FI1", (-energy_from_lambda(6.0), 15),
                 x0=-0.1,
                 width=0.008,
                 A=350.0,
                 q=0.02,
                 kappa=0.01,
                 c=0.0,
                 weight=1)
    # Contruct a SqE model
    sqe = SqE(lines=(L1, L2, L3), lam=6.0, dlam=0.12, lSD=3.43, T=20)
    # Add the detector efficiency correction
    decf = DetectorEfficiencyCorrectionFactor(sqe, ne=10000, nlam=20)
    # Add the energycutoff correction
    eccf = EnergyCutOffCorrectionFactor(sqe, ne=10000, nlam=20)

    ### Instantiate a transformer
    sqt = SqtTransformer(sqe,
                         corrections=(decf, eccf),
                         nlam=20,
                         ne=10000,
                         lSD=3.43)
    print("\n\nBefore update:")
    pprint(sqt.export_to_dict())
    tdict = dict(T=30,
                 lam=8.0,
                 x0_Lorentzian2=-0.5,
                 width_Lorentzian2=0.025,
                 weight_Lorentzian1=5,
                 nlam=55,
                 kappa_FI1=1.0,
                 some_wired_param=True)
    sqt.update_params(**tdict)
    print("\n\nAfter update:")
    pprint(sqt.export_to_dict())
Example #16
0
def test_DetectorEfficiencyCorrectionFactor():
    # We need some lines
    L1 = LorentzianLine("Lorentzian1", (-5.0, 5.0),
                        x0=0.0,
                        width=0.4,
                        c=0.0,
                        weight=2)
    L2 = LorentzianLine(name="Lorentzian2",
                        domain=(-5.0, 5.0),
                        x0=-1.0,
                        width=0.4,
                        c=0.02,
                        weight=1)
    # Contruct a SqE model
    sqe = SqE(lines=(L1, L2), lam=6.0, dlam=0.12, lSD=3.43, T=20)
    # Instantiate a detector efficiency corr factor
    decf = DetectorEfficiencyCorrectionFactor(sqe)

    ne = 10
    nlam = 5
    lam = 6.0 * linspace(1 - 0.12 * 1.01, 1 + 0.12 * 1.01, nlam)
    lams = tile(lam, (ne, 1))

    a = -0.99999 * energy_from_lambda(lam)
    b = 15.0 + a
    es = linspace(a, b, ne)

    deteff = detector_efficiency(es, lams, 1)
    tria = triangle_distribution(lams, 6.0, 0.12)

    print("Triangular wavelenght distr.: ", tria)
    print("Triangular wavelength distr. shape: ", tria.shape)
    print("Det. eff. values: ", deteff)
    print("Det. eff. values shape: :", deteff.shape)

    sqevals = sqe(es)

    print("Manual mult.: ", sqevals * deteff * tria)
    print("Class result: ", decf(es, lams))

    print("Are manual and deteffcorrfac identical?: ",
          all((sqevals * deteff * tria) == decf(es, lams)))
Example #17
0
def test_transformer_basics():
    ### Creating a SqE model for transformation
    # We need some lines
    L1 = LorentzianLine(name="Lorentzian1", domain=(-15.0, 15.0), x0=-1.0, width=0.4, c=0.0, weight=3)
    # Contruct a SqE model
    sqe1 = SqE(lines=(L1,), lam=6.0, dlam=0.12, l_SD=3.43, T=20)

    ### Instantiate a transformer
    sqt1 = SqtTransformer(
        sqe1,
        corrections=(DetectorEfficiencyCorrectionFactor(sqe1, n_e=15000, n_lam=20),),
        n_e=15000,
        n_lam=20,
        l_SD=3.43
    )

    ### Values for transformation
    taus = logspace(-6, -1, 11)
    freqs = MIEZE_DeltaFreq_from_time(taus*1.0e-9, 3.43, 6.0)

    ### TRANSFORM!!
    sqt1vals = [sqt1(freq) for freq in freqs]
    sqt1vals_arg = arg.Sqt(
        arg.fqe_I,
        freqs,
        -1.0,
        0.4,
        15000,
        20,
        3.43,
        6.0,
        0.12,
        0.0,
        1.0,
        20,
        0.00005,
        0.1,
        350.
    )
Example #18
0
         L1(e) * L1.normalize(),
         color="C1",
         ls="--",
         lw=1.0,
         label="(re)normalized")
ax1.set_title("A simple Line")
ax1.legend()
#plt.show()
#------------------------------------------------------------------------------

### Create a SqE model from the three lines
### Add the three weighted lines individually
icalcstrat = InelasticCalcStrategy(T=20.)
qcalcstrat = QuasielasticCalcStrategy()
# This creates the sqe model
sqe1 = SqE(lines=(L1, L2, L3), lam=6.0, dlam=0.12, l_SD=3.43, T=20)

# Sum of the Lines (l1, L2, L3) weights
sum_of_weights = sum([l.line_params["weight"] for l in (L1, L2, L3)])

f2 = plt.figure(figsize=(6.0, 4.0))
ax2 = f2.add_subplot(111)
ax2.plot(e, sqe1(e), color="C4", label="S(q,E)", ls="-", lw=2.0)
ax2.plot(e,
         qcalcstrat.calc(L1, e) / sum_of_weights,
         color="C0",
         ls="--",
         label=f"{L1.name} (quasiel)")
ax2.plot(e,
         qcalcstrat.calc(L2, e) / sum_of_weights,
         color="C1",
Example #19
0
def test_EnergyCutoffCorrectionFactor():
    # We need some lines
    L1 = LorentzianLine("Lorentzian1", (-5.0, 5.0),
                        x0=0.0,
                        width=0.4,
                        c=0.0,
                        weight=2)
    L2 = LorentzianLine(name="Lorentzian2",
                        domain=(-5.0, 5.0),
                        x0=-1.0,
                        width=0.4,
                        c=0.02,
                        weight=1)
    # Contruct a SqE model
    sqe = SqE(lines=(L1, L2), lam=6.0, dlam=0.12, lSD=3.43, T=20)
    new_domain = (-1 * energy_from_lambda(6.0), UPPER_INTEGRATION_LIMIT)
    sqe.update_domain(new_domain)
    # init energycutoff
    eccf = EnergyCutOffCorrectionFactor(sqe, ne=10000, nlam=20)

    ne = 10000
    nlam = 5
    lam = 6.0 * linspace(1 - 0.12 * 1.01, 1 + 0.12 * 1.01, nlam)
    lams = tile(lam, (ne, 1))

    a = -0.99999 * energy_from_lambda(lam)
    b = 15.0 + a
    es = linspace(a, b, ne)

    ### Calculate the trapz integral over the S(q,E)
    # Only over domain (interval length: 15 meV)

    I_over_dom_only = trapz(sqe(es[:, 2]), es[:, 2])
    print("Trapz integration over the domain.")
    print(f"Interval {a[2]:.4f} - {b[2]:.4f} -> length {b[2]-a[2]:.4f} meV.")
    print(f"#Steps = {ne}")
    print(f"Integral value: {I_over_dom_only:.4f}")
    #    plt.plot(es[:,2], sqe(es[:,2]), label="Over domain only")
    #    plt.show()

    # Beyond domain same array length
    es_same_length = linspace(-UPPER_INTEGRATION_LIMIT,
                              UPPER_INTEGRATION_LIMIT, ne)
    I_beyond_dom_same_length = trapz(sqe(es_same_length), es_same_length)
    print("\nTrapz integration beyond the domain with varrying stepsize.")
    print(
        f"Interval {-UPPER_INTEGRATION_LIMIT} - {UPPER_INTEGRATION_LIMIT} -> length {30.0} meV."
    )
    print(f"#Steps = {ne}")
    print(f"Integral value: {I_beyond_dom_same_length:.4f}")
    #    plt.plot(es_same_length, sqe(es_same_length), ls="--", label="Beyond domain ne=10000")
    #    plt.show()

    # Beyond domain same step size
    es_same_stepsize = arange(-UPPER_INTEGRATION_LIMIT,
                              UPPER_INTEGRATION_LIMIT + 0.001, 15e-3)
    I_beyond_dom_same_stepsize = trapz(sqe(es_same_stepsize), es_same_stepsize)
    print("\nTrapz integration beyond the domain with varrying stepsize.")
    print(
        f"Interval {-UPPER_INTEGRATION_LIMIT} - {UPPER_INTEGRATION_LIMIT} -> length {30.0} meV."
    )
    print(f"#Steps = {30.0 / 0.015}")
    print(f"Integral value: {I_beyond_dom_same_stepsize:.4f}")
Example #20
0
def slow_vis_fitting():
    ### Creating a SqE model for transformation
    # We need some lines
    #    L1 = LorentzianLine("Lorentzian1", (-5.0, 5.0), x0=0.0, width=0.4, c=0.0, weight=1)
    L2 = LorentzianLine(name="Lorentzian2",
                        domain=(-5.0, 5.0),
                        x0=1.5,
                        width=0.4,
                        c=0.0,
                        weight=2)
    L3 = F_ILine("FI1", (-energy_from_lambda(6.0), 15),
                 x0=0.0,
                 width=0.008,
                 A=350.0,
                 q=0.02,
                 kappa=0.01,
                 c=0.0,
                 weight=1)
    # Contruct a SqE model
    sqe1 = SqE((L2, L3), lam=6.0, dlam=0.12, lSD=3.43, T=20)

    ### Instantiate a transformer
    # Consider detector efficiency
    decf = DetectorEfficiencyCorrectionFactor(sqe1)
    sqt1 = SqtTransformer(sqe1,
                          corrections=(decf, ),
                          ne=10000,
                          nlam=20,
                          lSD=3.43)

    ### Creating a logger for debugging:
    import logging
    # Create and configure logger
    logging.basicConfig(filename=f"{testdir}/resources/fit.log",
                        level=logging.INFO,
                        filemode="w")
    logger = logging.getLogger()

    ### Values for transformation
    taus = logspace(-6, -1, 101)
    datataus = array([
        2.0e-6, 6.0e-6, 4.1e-5, 2.5e-4, 5.5e-4, 1.0e-3, 1.32e-3, 1.7e-3,
        2.2e-3, 2.63e-3, 2.77e-3, 3.3e-3, 4.27e-3, 5.11e-3, 6.77e-3, 8.96e-3,
        2.0e-2
    ])
    x = MIEZE_DeltaFreq_from_time(datataus * 1.0e-9, 3.43, 6.0)
    longx = MIEZE_DeltaFreq_from_time(taus * 1.0e-9, 3.43, 6.0)

    ### TRANSFORM!!
    y = array([sqt1(freq) for freq in x])
    sqt1vals = array([sqt1(freq) for freq in longx])
    yerr = 0.03 * random.randn(len(y))

    ### FIT!
    m = FitModelCreator.from_transformer(
        sqt1,
        x,
        abs(y + yerr),
        yerr, [-1.5, 0.2, 0.0, 3.0, 0.01, 350.0, 0.02, 0.015, 0.0, 1.0],
        logger=logger)
    # m.fixed["c_Lorentzian1"] = True
    m.fixed["c_Lorentzian2"] = True
    print("fcn for m:\n", m.fcn)

    m2 = FitModelCreator.from_Minuit(
        minuitobj=m,
        #        limit_weight_Lorentzian1=(0, None),
        #        limit_width_Lorentzian1=(0, None),
        limit_weight_Lorentzian2=(0, None),
        limit_width_Lorentzian2=(0, None),
        limit_weight_FI1=(0.0, None),
        limit_kappa_FI1=(0.0, None),
        #        fix_c_Lorentzian1=True,
        fix_c_Lorentzian2=True,
        #        fix_weight_Lorentzian1=True
        fix_c_FI1=True,
        fix_weight_FI1=True,
        fix_A_FI1=True,
        fix_q_FI1=True)
    print("fcn for m2:\n", m2.fcn)

    #    fmin, res = m.migrad(ncall=1000)
    #    print(fmin)
    #    print(res)
    fmin, res = m2.migrad(ncall=1000)
    print(fmin)
    print(res)

    ### Gather Fit results
    # dL1res1 = {
    #     "x0" : 0.0,
    #     "width" : res[0].value,
    #     "c" : res[1].value,
    #     "weight" : res[2].value
    # }
    # dL2res1 = {
    #     "x0" : res[3].value,
    #     "width" : res[4].value,
    #     "c" : res[5].value,
    #     "weight" : res[6].value
    # }
    dL2res1 = {
        "x0": res[0].value,
        "width": res[1].value,
        "c": res[2].value,
        "weight": res[3].value
    }
    dFI1res = {
        "width": res[4].value,
        "A": res[5].value,
        "q": res[6].value,
        "kappa": res[7].value,
        "c": res[8].value,
        "weight": res[9].value
    }

    #    L1.update_line_params(**dL1res1)
    L2.update_line_params(**dL2res1)
    L3.update_line_params(**dFI1res)
    sqtres1vals = array([sqt1(freq) for freq in longx])

    # ### Gather Fit results
    # dL1res2 = {
    #     "x0" : 0.0,
    #     "width" : res2[0].value,
    #     "c" : res2[1].value,
    #     "weight" : res2[2].value
    # }
    # dL2res2 = {
    #     "x0" : res2[3].value,
    #     "width" : res2[4].value,
    #     "c" : res2[5].value,
    #     "weight" : res2[6].value
    # }

    # L1.update_line_params(**dL1res2)
    # L2.update_line_params(**dL2res2)
    # sqtres2vals = array([sqt1(freq) for freq in longx])

    ### Calculate init guess
    # dL1ig = {
    #     "x0" : 0.0,
    #     "width" : 0.6,
    #     "c" : 0,
    #     "weight" : 1.0
    # }
    # dL2ig = {
    #     "x0" : -1.5,
    #     "width" : 0.2,
    #     "c" : 0.0,
    #     "weight" : 3.0
    # }
    dL2ig = {"x0": -1.5, "width": 0.2, "c": 0.0, "weight": 3.0}
    dFI1ig = {
        "x0": 0.0,
        "width": 0.01,
        "A": 350,
        "q": 0.02,
        "kappa": 0.015,
        "c": 0.0,
        "weight": 1.0
    }

    # L1.update_line_params(**dL1ig)
    L2.update_line_params(**dL2ig)
    L3.update_line_params(**dFI1ig)
    sqtigvals = array([sqt1(freq) for freq in longx])

    plt.plot(taus, sqt1vals, label="orig. curve", ls="--", color="C0")
    plt.plot(taus, sqtres1vals, label="fit curve 1", ls="-", color="C1")
    # plt.plot(taus, sqtres2vals, label="fit curve 2", ls=":", color="C4")
    plt.plot(taus, sqtigvals, label="init guess", ls="-.", color="C2")
    plt.errorbar(datataus,
                 abs(y + yerr),
                 yerr,
                 label="data",
                 ls="",
                 marker="o",
                 color="C0")
    plt.xscale("log")
    plt.xlabel("$\\tau_{MIEZE}$ [ns]", fontsize=16.)
    plt.ylabel("S(q,t) [arb. u.]", fontsize=16.)
    plt.legend()
    plt.show()
Example #21
0
def test_DetectorEfficiency_quad_vs_trapz():
    # We need some lines
    L1 = LorentzianLine("Lorentzian1", (-5.0, 5.0),
                        x0=0.0,
                        width=0.4,
                        c=0.0,
                        weight=2)
    L2 = LorentzianLine(name="Lorentzian2",
                        domain=(-5.0, 5.0),
                        x0=-1.0,
                        width=0.4,
                        c=0.02,
                        weight=1)
    # Contruct a SqE model
    sqe = SqE(lines=(L1, L2), lam=6.0, dlam=0.12, lSD=3.43, T=20)

    ### QUAD
    from scipy.integrate import dblquad
    # parameter for calculation
    plam, pdlam = 6.0, 0.12

    def dblquadfunc(energy, lam, on):
        # det_eff = detector_efficiency(energy, lam, 1)
        # sqeval = sqe(energy)
        # tri_distr_weight = triangle_distribution(lam, plam, pdlam)
        return detector_efficiency(energy, lam,
                                   on) * sqe(energy) * triangle_distribution(
                                       lam, plam, pdlam)

    # integrate
    t0quad = time()
    reson, erron = dblquad(
        dblquadfunc,
        plam * (1 - pdlam),
        plam * (1 + pdlam),
        lambda x: -0.9999 * energy_from_lambda(x),
        lambda x: UPPER_INTEGRATION_LIMIT,
        args=(1, ),
        #epsabs=1.0e-2
    )
    resoff, erroff = dblquad(
        dblquadfunc,
        plam * (1 - pdlam),
        plam * (1 + pdlam),
        lambda x: -0.9999 * energy_from_lambda(x),
        lambda x: UPPER_INTEGRATION_LIMIT,
        args=(0, ),
        #epsabs=1.0e-2
    )
    t1quad = time()
    print(
        f"RESULT: {resoff/reson} +- {resoff/reson * ((erron/reson)**2+(erroff/resoff)**2)**0.5}"
    )
    print(f"dblquad took {t1quad - t0quad} seconds")

    ### TRAPZ
    decf = DetectorEfficiencyCorrectionFactor(sqe)
    ee, ll = energy_lambda_nrange(UPPER_INTEGRATION_LIMIT, 6.0, 0.12, 15000,
                                  20)
    # integrate
    t0trapz = time()
    trapz_res = decf(ee, ll)
    t1trapz = time()
    print(f"RESULT: {trapz_res}")
    print(f"trapz took {t1trapz - t0trapz} seconds")
Example #22
0
### Creating a SqE model for transformation
# We need some lines
L1 = LorentzianLine("Lorentzian1", (-5.0, 5.0),
                    x0=0.0,
                    width=0.4,
                    c=0.0,
                    weight=2)
L2 = LorentzianLine(name="Lorentzian2",
                    domain=(-5.0, 5.0),
                    x0=-1.0,
                    width=0.4,
                    c=0.0,
                    weight=1)
# Contruct a SqE model
sqe = SqE(lines=(L1, L2), lam=6.0, dlam=0.12, lSD=3.43, T=20)
### Instantiate a transformer
sqt = SqtTransformer(sqe, nlam=20, ne=10000)


def test_format_param_dict_for_logger():
    names = FitModelCreator.get_param_names(sqe)
    params = [0.020, 0.0, 12, 0.15, 0.020, 0.0, 1]
    print(format_param_dict_for_logger(dict(zip(names, params))))


#------------------------------------------------------------------------------


def test_format_sqt_lines_for_logger():
    print(format_sqt_lines_for_logger(sqt))
Example #23
0
def test_adaptive_vs_linear():
    #
    L1 = LorentzianLine("LL1", (-energy_from_lambda(6.0), 15),
                        x0=0.048,
                        width=0.04,
                        c=0.0,
                        weight=0.0)
    L2 = F_cLine("F_c1", (-energy_from_lambda(6.0), 15),
                 x0=0.0,
                 width=0.0001,
                 A=350.0,
                 q=0.02,
                 c=0.0,
                 weight=1)
    L3 = F_ILine("F_I1", (-energy_from_lambda(6.0), 15),
                 x0=-0.02,
                 width=0.01,
                 A=350.0,
                 q=0.02,
                 kappa=0.01,
                 c=0.0,
                 weight=1)
    # Contruct a SqE model
    sqe = SqE(lines=(L1, L2, L3), lam=6.0, dlam=0.12, lSD=3.43, T=20)
    # Add the detector efficiency correction
    decf = DetectorEfficiencyCorrectionFactor(sqe, ne=100, nlam=20)

    ### Construct the adaptive integration grid
    ne = 100
    nlam = 21
    l = linspace(1 - sqe.model_params["dlam"], 1 + sqe.model_params["dlam"],
                 nlam) * sqe.model_params["lam"]
    a = -0.99999 * energy_from_lambda(l)

    ee = sqe.get_adaptive_integration_grid(ne, nlam)
    ee = where(ee <= atleast_2d(a), atleast_2d(a), ee)

    ne = ee.shape[0]
    ll = tile(l, (ne, 1))

    print(
        f"ee: - Shape: {ee.shape}\n - ee[::50, {nlam//2}]: {ee[::50, nlam//2]}"
    )
    print(
        f"ll: - Shape: {ll.shape}\n - ll[::50, {nlam//2}]: {ll[::50, nlam//2]}"
    )

    ### Construct a standard linear integration grid
    nelin = 10000
    nlamlin = 21
    eelin, lllin = energy_lambda_nrange(15.0, 6.0, 0.12, nelin, nlamlin)

    print(
        f"eelin: - Shape: {ee.shape}\n - ee[::{nelin//10}, {nlam//2}]: {eelin[::nelin//10, nlam//2]}"
    )
    print(
        f"lllin: - Shape: {ll.shape}\n - ll[::{nelin//10}, {nlam//2}]: {lllin[::nelin//10, nlam//2]}"
    )

    ### perform correction calculation
    from time import time
    startt = time()
    adaptcorr = decf.calc(ee, ll)
    intermedt = time()
    lincorr = decf.calc(eelin, lllin)
    stopt = time()

    print(f"Adaptive integration took: {intermedt - startt:.6f}")
    print(f"Adaptive grid correction value: {adaptcorr:.6f}")
    print(f"Linear integration took  : {stopt - intermedt:.6f}")
    print(f"Linear grid correction value  : {lincorr:.6f}")