Example #1
0
def validate(val_loader, model_path, epoch, restore):
    net = CrowdCounter(ce_weights=train_set.wts)
    net.load_state_dict(torch.load(model_path))
    net.cuda()
    net.eval()
    print '='*50
    val_loss_mse = []
    val_loss_cls = []
    val_loss_seg = []
    val_loss = []
    mae = 0.0
    mse = 0.0

    for vi, data in enumerate(val_loader, 0):
        img, gt_map, gt_cnt, roi, gt_roi, gt_seg = data
        # pdb.set_trace()
        img = Variable(img, volatile=True).cuda()
        gt_map = Variable(gt_map, volatile=True).cuda()
        gt_seg = Variable(gt_seg, volatile=True).cuda()

        roi = Variable(roi[0], volatile=True).cuda().float()
        gt_roi = Variable(gt_roi[0], volatile=True).cuda()

        pred_map,pred_cls,pred_seg = net(img, gt_map, roi, gt_roi, gt_seg)
        loss1,loss2,loss3 = net.f_loss()
        val_loss_mse.append(loss1.data)
        val_loss_cls.append(loss2.data)
        val_loss_seg.append(loss3.data)
        val_loss.append(net.loss.data)

        pred_map = pred_map.data.cpu().numpy()
        gt_map = gt_map.data.cpu().numpy()

        pred_seg = pred_seg.cpu().max(1)[1].squeeze_(1).data.numpy()
        gt_seg = gt_seg.data.cpu().numpy()
        gt_count = np.sum(gt_map)
        pred_cnt = np.sum(pred_map)

        mae += abs(gt_count-pred_cnt)
        mse += ((gt_count-pred_cnt)*(gt_count-pred_cnt))

        x = []
        if vi==0:
            for idx, tensor in enumerate(zip(img.cpu().data, pred_map, gt_map, pred_seg, gt_seg)):
                if idx>cfg.VIS.VISIBLE_NUM_IMGS:
                    break
                # pdb.set_trace()
                pil_input = restore(tensor[0]/255.)
                pil_label = torch.from_numpy(tensor[2]/(tensor[2].max()+1e-10)).repeat(3,1,1)
                pil_output = torch.from_numpy(tensor[1]/(tensor[1].max()+1e-10)).repeat(3,1,1)
                
                pil_gt_seg = torch.from_numpy(tensor[4]).repeat(3,1,1).float()
                pil_pred_seg = torch.from_numpy(tensor[3]).repeat(3,1,1).float()
                # pdb.set_trace()
                
                x.extend([pil_to_tensor(pil_input.convert('RGB')), pil_label, pil_output, pil_gt_seg, pil_pred_seg])
            x = torch.stack(x, 0)
            x = vutils.make_grid(x, nrow=5, padding=5)
            writer.add_image(exp_name + '_epoch_' + str(epoch+1), (x.numpy()*255).astype(np.uint8))

    mae = mae/val_set.get_num_samples()
    mse = np.sqrt(mse/val_set.get_num_samples())

    '''
    loss1 = float(np.mean(np.array(val_loss_mse)))
    loss2 = float(np.mean(np.array(val_loss_cls)))
    loss3 = float(np.mean(np.array(val_loss_seg)))
    loss = float(np.mean(np.array(val_loss)))'''
    loss1 = np.mean(np.array(val_loss_mse))[0]
    loss2 = np.mean(np.array(val_loss_cls))[0]
    loss3 = np.mean(np.array(val_loss_seg))[0]
    loss = np.mean(np.array(val_loss))[0]    

    writer.add_scalar('val_loss_mse', loss1, epoch + 1)
    writer.add_scalar('val_loss_cls', loss2, epoch + 1)
    writer.add_scalar('val_loss_seg', loss3, epoch + 1)
    writer.add_scalar('val_loss', loss, epoch + 1)
    writer.add_scalar('mae', mae, epoch + 1)
    writer.add_scalar('mse', mse, epoch + 1)


    if mae < train_record['best_mae']:
        train_record['best_mae'] = mae
        train_record['mse'] = mse
        train_record['corr_epoch'] = epoch + 1
        train_record['corr_loss'] = loss        

    print '='*50
    print exp_name
    print '    '+ '-'*20
    print '    [mae %.1f mse %.1f], [val loss %.8f %.8f %.4f %.4f]' % (mae, mse, loss, loss1, loss2, loss3)         
    print '    '+ '-'*20
    # pdb.set_trace()
    print '[best] [mae %.1f mse %.1f], [loss %.8f], [epoch %d]' % (train_record['best_mae'], train_record['mse'], train_record['corr_loss'], train_record['corr_epoch'])
    print '='*50
Example #2
0
def validate(val_loader, model_path, epoch, restore):
    net = CrowdCounter(ce_weights=train_set.wts)
    net.load_state_dict(torch.load(model_path))
    net.cuda()
    net.eval()
    print '=' * 50
    val_loss_mse = []
    val_loss_cls = []
    val_loss_seg = []
    val_loss = []
    mae = 0.0
    mse = 0.0

    for vi, data in enumerate(val_loader, 0):
        img, gt_map, gt_cnt, roi, gt_roi, gt_seg = data
        # pdb.set_trace()
        img = Variable(img, volatile=True).cuda()
        gt_map = Variable(gt_map, volatile=True).cuda()
        gt_seg = Variable(gt_seg, volatile=True).cuda()

        roi = Variable(roi[0], volatile=True).cuda().float()
        gt_roi = Variable(gt_roi[0], volatile=True).cuda()

        pred_map, pred_cls, pred_seg = net(img, gt_map, roi, gt_roi, gt_seg)
        loss1, loss2, loss3 = net.f_loss()
        val_loss_mse.append(loss1.data)
        val_loss_cls.append(loss2.data)
        val_loss_seg.append(loss3.data)
        val_loss.append(net.loss.data)

        pred_map = pred_map.data.cpu().numpy()
        gt_map = gt_map.data.cpu().numpy()

        pred_seg = pred_seg.cpu().max(1)[1].squeeze_(1).data.numpy()
        gt_seg = gt_seg.data.cpu().numpy()

        # pdb.set_trace()
        # pred_map = pred_map*pred_seg

        gt_count = np.sum(gt_map)
        pred_cnt = np.sum(pred_map)

        mae += abs(gt_count - pred_cnt)
        mse += ((gt_count - pred_cnt) * (gt_count - pred_cnt))

    # pdb.set_trace()
    mae = mae / val_set.get_num_samples()
    mse = np.sqrt(mse / val_set.get_num_samples())

    loss1 = np.mean(np.array(val_loss_mse))[0]
    loss2 = np.mean(np.array(val_loss_cls))[0]
    loss3 = np.mean(np.array(val_loss_seg))[0]
    loss = np.mean(np.array(val_loss))[0]

    print '=' * 50
    print exp_name
    print '    ' + '-' * 20
    print '    [mae %.1f mse %.1f], [val loss %.8f %.8f %.4f %.4f]' % (
        mae, mse, loss, loss1, loss2, loss3)
    print '    ' + '-' * 20
    print '=' * 50