# Initialize input pipelines dataset.init_input_pipeline(config) # Test the input pipeline alone with this debug function # dataset.check_input_pipeline_timing(config) ############## # Define Model ############## print('Creating Model') print('**************\n') t1 = time.time() # Model class model = KernelPointFCNN(dataset.flat_inputs, config) # Trainer class trainer = ModelTrainer(model) t2 = time.time() print('\n----------------') print('Done in {:.1f} s'.format(t2 - t1)) print('----------------\n') ################ # Start training ################ print('Start Training') print('**************\n')
def test_caller(path, step_ind, on_val): ########################## # Initiate the environment ########################## # Choose which gpu to use GPU_ID = '0' # Set GPU visible device os.environ['CUDA_VISIBLE_DEVICES'] = GPU_ID # Disable warnings os.environ['TF_CPP_MIN_LOG_LEVEL'] = '0' ########################### # Load the model parameters ########################### # Load model parameters config = Config() config.load(path) ################################## # Change model parameters for test ################################## # Change parameters for the test here. For example, you can stop augmenting the input data. #config.augment_noise = 0.0001 #config.augment_color = 1.0 config.validation_size = 500 #config.batch_num = 10 ############## # Prepare Data ############## print() print('Dataset Preparation') print('*******************') # Initiate dataset configuration if config.dataset.startswith('ModelNet40'): dataset = ModelNet40Dataset(config.input_threads) elif config.dataset == 'S3DIS': dataset = S3DISDataset(config.input_threads) on_val = True elif config.dataset == 'Scannet': dataset = ScannetDataset(config.input_threads, load_test=(not on_val)) elif config.dataset.startswith('ShapeNetPart'): dataset = ShapeNetPartDataset( config.dataset.split('_')[1], config.input_threads) elif config.dataset == 'NPM3D': dataset = NPM3DDataset(config.input_threads, load_test=(not on_val)) elif config.dataset == 'Semantic3D': dataset = Semantic3DDataset(config.input_threads) else: raise ValueError('Unsupported dataset : ' + config.dataset) # Create subsample clouds of the models dl0 = config.first_subsampling_dl dataset.load_subsampled_clouds(dl0) # Initialize input pipelines if on_val: dataset.init_input_pipeline(config) else: dataset.init_test_input_pipeline(config) ############## # Define Model ############## print('Creating Model') print('**************\n') t1 = time.time() if config.dataset.startswith('ShapeNetPart'): model = KernelPointFCNN(dataset.flat_inputs, config) elif config.dataset.startswith('S3DIS'): model = KernelPointFCNN(dataset.flat_inputs, config) elif config.dataset.startswith('Scannet'): model = KernelPointFCNN(dataset.flat_inputs, config) elif config.dataset.startswith('NPM3D'): model = KernelPointFCNN(dataset.flat_inputs, config) elif config.dataset.startswith('ModelNet40'): model = KernelPointCNN(dataset.flat_inputs, config) elif config.dataset.startswith('Semantic3D'): model = KernelPointFCNN(dataset.flat_inputs, config) else: raise ValueError('Unsupported dataset : ' + config.dataset) # Find all snapshot in the chosen training folder snap_path = os.path.join(path, 'snapshots') snap_steps = [ int(f[:-5].split('-')[-1]) for f in os.listdir(snap_path) if f[-5:] == '.meta' ] # Find which snapshot to restore chosen_step = np.sort(snap_steps)[step_ind] chosen_snap = os.path.join(path, 'snapshots', 'snap-{:d}'.format(chosen_step)) # Create a tester class tester = ModelTester(model, restore_snap=chosen_snap) t2 = time.time() print('\n----------------') print('Done in {:.1f} s'.format(t2 - t1)) print('----------------\n') ############ # Start test ############ print('Start Test') print('**********\n') if config.dataset.startswith('ShapeNetPart'): if config.dataset.split('_')[1] == 'multi': tester.test_multi_segmentation(model, dataset) else: tester.test_segmentation(model, dataset) elif config.dataset.startswith('S3DIS'): tester.test_cloud_segmentation_on_val(model, dataset) elif config.dataset.startswith('Scannet'): if on_val: tester.test_cloud_segmentation_on_val(model, dataset) else: tester.test_cloud_segmentation(model, dataset) elif config.dataset.startswith('Semantic3D'): if on_val: tester.test_cloud_segmentation_on_val(model, dataset) else: tester.test_cloud_segmentation(model, dataset) elif config.dataset.startswith('NPM3D'): if on_val: tester.test_cloud_segmentation_on_val(model, dataset) else: tester.test_cloud_segmentation(model, dataset) elif config.dataset.startswith('ModelNet40'): tester.test_classification(model, dataset) else: raise ValueError('Unsupported dataset')