Example #1
0
    def __init__(self, opt):
        super(LeakGANInstructor, self).__init__(opt)

        # generator, discriminator
        self.gen = LeakGAN_G(cfg.gen_embed_dim, cfg.gen_hidden_dim, cfg.vocab_size, cfg.max_seq_len,
                             cfg.padding_idx, cfg.goal_size, cfg.step_size, cfg.CUDA)
        self.dis = LeakGAN_D(cfg.dis_embed_dim, cfg.vocab_size, cfg.padding_idx, gpu=cfg.CUDA)
        self.init_model()

        # optimizer
        mana_params, work_params = self.gen.split_params()
        mana_opt = optim.Adam(mana_params, lr=cfg.gen_lr)
        work_opt = optim.Adam(work_params, lr=cfg.gen_lr)

        self.gen_opt = [mana_opt, work_opt]
        self.dis_opt = optim.Adam(self.dis.parameters(), lr=cfg.dis_lr)

        # Criterion
        self.mle_criterion = nn.NLLLoss()
        self.dis_criterion = nn.CrossEntropyLoss()

        # DataLoader
        self.gen_data = GenDataIter(self.gen.sample(cfg.batch_size, cfg.batch_size, self.dis))
        self.dis_data = DisDataIter(self.gen_data.random_batch()['target'], self.train_data.random_batch()['target'])

        # Metrics
        self.bleu = BLEU(test_text=tensor_to_tokens(self.gen_data.target, self.index_word_dict),
                         real_text=tensor_to_tokens(self.test_data.target, self.test_data.index_word_dict), gram=3)
        self.self_bleu = BLEU(test_text=tensor_to_tokens(self.gen_data.target, self.index_word_dict),
                              real_text=tensor_to_tokens(self.gen_data.target, self.index_word_dict),
                              gram=3)
    def __init__(self, opt):
        super(LeakGANInstructor, self).__init__(opt)

        # generator, discriminator
        self.gen = LeakGAN_G(cfg.gen_embed_dim, cfg.gen_hidden_dim,
                             cfg.vocab_size, cfg.max_seq_len, cfg.padding_idx,
                             cfg.goal_size, cfg.step_size, cfg.CUDA)
        self.dis = LeakGAN_D(cfg.dis_embed_dim,
                             cfg.vocab_size,
                             cfg.padding_idx,
                             gpu=cfg.CUDA)
        self.init_model()

        # optimizer
        mana_params, work_params = self.gen.split_params()
        mana_opt = optim.Adam(mana_params, lr=cfg.gen_lr)
        work_opt = optim.Adam(work_params, lr=cfg.gen_lr)

        self.gen_opt = [mana_opt, work_opt]
        self.dis_opt = optim.Adam(self.dis.parameters(), lr=cfg.dis_lr)

        # Criterion
        self.mle_criterion = nn.NLLLoss()
        self.dis_criterion = nn.CrossEntropyLoss()

        # DataLoader
        self.gen_data = GenDataIter(
            self.gen.sample(cfg.batch_size, cfg.batch_size, self.dis))
        self.dis_data = DisDataIter(self.gen_data.random_batch()['target'],
                                    self.oracle_data.random_batch()['target'])
        self.dis_eval_data = DisDataIter(
            self.gen_data.random_batch()['target'],
            self.oracle_data.random_batch()['target'])
Example #3
0
    def __init__(self, opt):
        super(LeakGANInstructor, self).__init__(opt)

        # generator, discriminator
        self.gen = LeakGAN_G(cfg.gen_embed_dim, cfg.gen_hidden_dim,
                             cfg.vocab_size, cfg.max_seq_len, cfg.padding_idx,
                             cfg.goal_size, cfg.step_size, cfg.CUDA)
        self.dis = LeakGAN_D(cfg.dis_embed_dim,
                             cfg.vocab_size,
                             cfg.padding_idx,
                             gpu=cfg.CUDA)
        self.init_model()

        # optimizer
        mana_params, work_params = self.gen.split_params()
        mana_opt = optim.Adam(mana_params, lr=cfg.gen_lr)
        work_opt = optim.Adam(work_params, lr=cfg.gen_lr)

        self.gen_opt = [mana_opt, work_opt]
        self.dis_opt = optim.Adam(self.dis.parameters(), lr=cfg.dis_lr)