Example #1
0
		log_dir = run_dir + '/' + args.name + '_stage_1'
		create_folder(log_dir)
		
		optimizer = optim.Adam(cnet.parameters(), lr=args.lr, weight_decay=args.weight_decay)

		train_dataset = SingleImgDataset(args.train_path, scale_aug=False, rot_aug=False, num_models=n_models_train, num_views=args.num_views)
		train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=0)

		val_dataset = SingleImgDataset(args.val_path, scale_aug=False, rot_aug=False, test_mode=True)
		val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=64, shuffle=False, num_workers=0)
		print('num_train_files: '+str(len(train_dataset.filepaths)))
		print('num_val_files: '+str(len(val_dataset.filepaths)))
		trainer = ModelNetTrainer(cnet, train_loader, val_loader, optimizer, nn.CrossEntropyLoss(), 'svcnn', log_dir, num_views=1)
		trainer.train(30)
	elif args.svcnn_training_mode == 'load':
		cnet.cuda()
		log_dir = args.prefix + 'ckpt/svcnn/model-00025.pth'
#		log_dir = ckpt_dir + '/20/mvcnn_stage_1/mvcnn/model-00025.pth'
		model = torch.load(log_dir)
		cnet.load_state_dict(model)
		print('SVCNN trained model loaded!')


	# STAGE 2
	log_dir = run_dir + '/' + args.name + '_stage_2'
	create_folder(log_dir)
	cnet_2 = MVCNN(args.name, cnet, nclasses=40, cnn_name=args.cnn_name, num_views=args.num_views, constraint=args.constraint, w_m=args.w_m, T=args.T, preType=args.preType)
	del cnet

	new_params = list(cnet_2.main_net.parameters()) + list(cnet_2.main_net.parameters()) if args.preType != None else cnet_2.main_net.parameters()
	params = new_params if args.freeze else cnet_2.parameters()
Example #2
0
    json.dump(vars(args), config_f)
    config_f.close()
    num_feature = 1024
    # STAGE 1
    log_dir = 'smtcloss_wonor_' + args.name + '_stage_1_' + localtime
    create_folder(log_dir)

    vgg = models.vgg11(pretrained=True)
    cnet = SVCNN(args.name,
                 vgg,
                 num_feature,
                 nclasses=40,
                 pretraining=pretraining,
                 cnn_name=args.cnn_name)
    if (torch.cuda.is_available()):
        cnet = cnet.cuda()
        print('use GPU to train ')
    else:
        print('don.t use gpu')

    #有centor loss 时
    center_loss = Triplet_Center_Loss()
    softmax_loss = nn.CrossEntropyLoss()
    optimizer_model = optim.SGD(cnet.parameters(),
                                lr=args.lr,
                                weight_decay=args.weight_decay,
                                momentum=0.9)
    optimizer_centerloss = optim.SGD(center_loss.parameters(),
                                     lr=args.lr_center)

    # #triplet_loss