Example #1
0
 def from_opts(cls, opt) -> InferencePipeline:
     """Load all trained models required from the locations indicated in opt."""
     pinet = create_model(opt).eval()
     args = DEFAULT_ARGS
     args.opts = ['TEST.MODEL_FILE', opt.pose_estimator]
     pose_estimator = PoseEstimator(args, opt.gpu_ids != [])
     segmentator = SegmentationModel(opt.segmentation_model, bool(opt.gpu_ids))
     return cls(pose_estimator, pinet, segmentator, opt)
Example #2
0
from options.test_options import TestOptions
from data.data_loader import CreateDataLoader
from models.PINet20 import create_model
from util.visualizer import Visualizer
from util import html
import time

opt = TestOptions().parse()
opt.nThreads = 1  # test code only supports nThreads = 1
opt.batchSize = 1  # test code only supports batchSize = 1
opt.serial_batches = True  # no shuffle
opt.no_flip = True  # no flip

data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
model = create_model(opt)
visualizer = Visualizer(opt)
# create website
web_dir = os.path.join(opt.results_dir, opt.name,
                       '%s_%s' % (opt.phase, opt.which_epoch))

webpage = html.HTML(
    web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' %
    (opt.name, opt.phase, opt.which_epoch))

print(opt.how_many)
print(len(dataset))

model = model.eval()
print(model.training)