Example #1
0
def main():
    # setup logger
    if args.resume_dir == "":
        date = str(datetime.datetime.now())
        date = date[:date.rfind(":")].replace("-", "") \
            .replace(":", "") \
            .replace(" ", "_")
        log_dir = os.path.join(args.log_root, "log_" + date)
    else:
        log_dir = args.resume_dir
    hparams_file = os.path.join(log_dir, "hparams.json")
    checkpoints_dir = os.path.join(log_dir, "checkpoints")
    if not os.path.exists(log_dir):
        os.makedirs(log_dir)
    if not os.path.exists(checkpoints_dir):
        os.makedirs(checkpoints_dir)
    if args.resume_dir == "":
        # write hparams
        with open(hparams_file, "w") as f:
            json.dump(args.__dict__, f, indent=2)
    log_file = os.path.join(log_dir, "log_train.txt")
    logger = Logger(log_file)
    # logger.info(args)
    logger.info("The args corresponding to training process are: ")
    for (key, value) in vars(args).items():
        logger.info("{key:20}: {value:}".format(key=key, value=value))

    actor_critic = ActorCritic(args, log_dir, checkpoints_dir)
    actor_critic.train()
Example #2
0
def train(rank,
          args,
          shared_model,
          counter,
          lock,
          optimizer=None,
          select_sample=True):
    torch.manual_seed(args.seed + rank)

    print("Process No : {} | Sampling : {}".format(rank, select_sample))

    FloatTensor = torch.cuda.FloatTensor if args.use_cuda else torch.FloatTensor
    DoubleTensor = torch.cuda.DoubleTensor if args.use_cuda else torch.DoubleTensor
    ByteTensor = torch.cuda.ByteTensor if args.use_cuda else torch.ByteTensor

    env = create_mario_env(args.env_name)
    env.seed(args.seed + rank)

    model = ActorCritic(env.observation_space.shape[0], len(ACTIONS))
    if args.use_cuda:
        model.cuda()
    if optimizer is None:
        optimizer = optim.Adam(shared_model.parameters(), lr=args.lr)

    model.train()

    state = env.reset()
    state = torch.from_numpy(state)
    done = True

    episode_length = 0
    for num_iter in count():

        if rank == 0:
            env.render()

            if num_iter % args.save_interval == 0 and num_iter > 0:
                print("Saving model at :" + args.save_path)
                torch.save(shared_model.state_dict(), args.save_path)

        if num_iter % (
                args.save_interval * 2.5
        ) == 0 and num_iter > 0 and rank == 1:  # Second saver in-case first processes crashes
            print("Saving model for process 1 at :" + args.save_path)
            torch.save(shared_model.state_dict(), args.save_path)

        # Sync with the shared model
        model.load_state_dict(shared_model.state_dict())
        if done:
            cx = Variable(torch.zeros(1, 512)).type(FloatTensor)
            hx = Variable(torch.zeros(1, 512)).type(FloatTensor)
        else:
            cx = Variable(cx.data).type(FloatTensor)
            hx = Variable(hx.data).type(FloatTensor)

        values = []
        log_probs = []
        rewards = []
        entropies = []
        reason = ''

        for step in range(args.num_steps):
            episode_length += 1
            state_inp = Variable(state.unsqueeze(0)).type(FloatTensor)
            value, logit, (hx, cx) = model((state_inp, (hx, cx)))
            prob = F.softmax(logit, dim=-1)
            log_prob = F.log_softmax(logit, dim=-1)
            entropy = -(log_prob * prob).sum(-1, keepdim=True)
            entropies.append(entropy)

            if select_sample:
                action = prob.multinomial().data
            else:
                action = prob.max(-1, keepdim=True)[1].data

            log_prob = log_prob.gather(-1, Variable(action))

            action_out = ACTIONS[action][0, 0]

            # print("Process: {} Action: {}".format(rank,  str(action_out)))

            state, reward, done, _ = env.step(action_out)

            done = done or episode_length >= args.max_episode_length
            reward = max(min(reward, 50), -50)

            with lock:
                counter.value += 1

            if done:
                episode_length = 0
                env.change_level(0)
                state = env.reset()
                print("Process {} has completed.".format(rank))

            env.locked_levels = [False] + [True] * 31
            state = torch.from_numpy(state)
            values.append(value)
            log_probs.append(log_prob)
            rewards.append(reward)

            if done:
                break

        R = torch.zeros(1, 1)
        if not done:
            state_inp = Variable(state.unsqueeze(0)).type(FloatTensor)
            value, _, _ = model((state_inp, (hx, cx)))
            R = value.data

        values.append(Variable(R).type(FloatTensor))
        policy_loss = 0
        value_loss = 0
        R = Variable(R).type(FloatTensor)
        gae = torch.zeros(1, 1).type(FloatTensor)
        for i in reversed(range(len(rewards))):
            R = args.gamma * R + rewards[i]
            advantage = R - values[i]
            value_loss = value_loss + 0.5 * advantage.pow(2)

            # Generalized Advantage Estimataion
            delta_t = rewards[i] + args.gamma * \
                values[i + 1].data - values[i].data
            gae = gae * args.gamma * args.tau + delta_t

            policy_loss = policy_loss - \
                log_probs[i] * Variable(gae).type(FloatTensor) - args.entropy_coef * entropies[i]

        total_loss = policy_loss + args.value_loss_coef * value_loss

        print("Process {} loss :".format(rank), total_loss.data)
        # print("Process: {} Episode: {}".format(rank,  str(episode_length)))
        optimizer.zero_grad()

        (total_loss).backward()
        torch.nn.utils.clip_grad_norm(model.parameters(), args.max_grad_norm)

        ensure_shared_grads(model, shared_model)
        optimizer.step()
    print("Process {} closed.".format(rank))
Example #3
0
def train(rank, args, shared_model, shared_scme, counter, lock, optimizer=None, select_sample=True):
    torch.manual_seed(args.seed + rank)

    print("Process No : {} | Sampling : {}".format(rank, select_sample))

    FloatTensor = torch.FloatTensor# torch.cuda.FloatTensor if args.use_cuda else torch.FloatTensor
    DoubleTensor = torch.DoubleTensor# torch.cuda.DoubleTensor if args.use_cuda else torch.DoubleTensor
    ByteTensor = torch.ByteTensor# torch.cuda.ByteTensor if args.use_cuda else torch.ByteTensor

    savefile = os.getcwd() + '/save/scmemi_'+ args.reward_type +'/train_reward.csv'
    saveweights = os.getcwd() + '/save/scmemi_'+ args.reward_type +'/mario_a3c_params.pkl'

    env = create_mario_env(args.env_name, args.reward_type)
    #env.seed(args.seed + rank)

    model = ActorCritic(env.observation_space.shape[0], len(ACTIONS))
    if optimizer is None:
        optimizer = optim.Adam(list(shared_model.parameters()) + list(shared_scme.parameters()), lr=args.lr)
        
    scme_model = SCME(env.observation_space.shape[0], len(ACTIONS))
    
    model.train()
    scme_model.train()

    state = env.reset()
    cum_rew = 0 
    state = torch.from_numpy(state)
    done = True
    
    episode_length = 0
    for num_iter in count():
        #env.render()
        if rank == 0:
            
            if num_iter % args.save_interval == 0 and num_iter > 0:
                print ("Saving model at :" + saveweights)            
                torch.save(shared_model.state_dict(), saveweights)
                torch.save(shared_scme.state_dict(), saveweights[:-4] + '_scme.pkl')

        if num_iter % (args.save_interval * 2.5) == 0 and num_iter > 0 and rank == 1:    # Second saver in-case first processes crashes 
            print ("Saving model for process 1 at :" + saveweights)            
            torch.save(shared_model.state_dict(), saveweights)
            torch.save(shared_scme.state_dict(), saveweights[:-4] + '_scme.pkl')
            
        # Sync with the shared model
        model.load_state_dict(shared_model.state_dict())
        scme_model.load_state_dict(shared_scme.state_dict())
        
        if done:
            cx = Variable(torch.zeros(1, 512)).type(FloatTensor)
            hx = Variable(torch.zeros(1, 512)).type(FloatTensor)
        else:
            cx = Variable(cx.data).type(FloatTensor)
            hx = Variable(hx.data).type(FloatTensor)

        values = []
        log_probs = []
        rewards = []
        entropies = []
        vae_losses = []
        cur_losses = []
        mi_losses = []
        #reason =''
        
        for step in range(args.num_steps):
            episode_length += 1            
            state_inp = Variable(state.unsqueeze(0)).type(FloatTensor)
            value, logit, (hx, cx) = model((state_inp, (hx, cx)))
            prob = F.softmax(logit, dim=-1)
            log_prob = F.log_softmax(logit, dim=-1)
            entropy = -(log_prob * prob).sum(-1, keepdim=True)
            entropies.append(entropy)
            
            
            if select_sample:
                action = prob.multinomial(1).data
            else:
                action = prob.max(-1, keepdim=True)[1].data
                
            log_prob = log_prob.gather(-1, Variable(action))
            
            action_out = int(action[0, 0].data.numpy())
            state, reward, done, info = env.step(action_out)
            cum_rew = cum_rew + reward
            
            action_one_hot = (torch.eye(len(ACTIONS))[action_out]).view(1,-1)
            
            next_state_inp = Variable(torch.from_numpy(state).unsqueeze(0)).type(FloatTensor)

            pred_z, mi, mi1, actual_z, xt1_hat, xt1, xt1_mu, xt1_logvar = scme_model((state_inp, next_state_inp, action_one_hot))
            vae_loss = loss_function(xt1_hat, xt1, xt1_mu, xt1_logvar)
            cur_loss = ((pred_z - actual_z).pow(2)).sum(-1, keepdim=True)/2/50
            mi_loss = mutual(mi, mi1).sum(-1, keepdim=True)/10
            done = done or episode_length >= args.max_episode_length
            
            cur_reward = (args.alpha*cur_loss).data.numpy()[0,0]
            mi_reward = (args.beta*mi_loss).data.numpy()
            reward = cur_reward + reward + mi_reward
            reward = max(min(reward, 50), -5)
            
            
            with lock:
                counter.value += 1

            if done:
                episode_length = 0
#                 env.change_level(0)
                state = env.reset()
                with open(savefile[:-4]+'_{}.csv'.format(rank), 'a', newline='') as sfile:
                    writer = csv.writer(sfile)
                    writer.writerows([[cum_rew, info['x_pos']/x_norm]])
                cum_rew = 0 
 #               print ("Process {} has completed.".format(rank))

#            env.locked_levels = [False] + [True] * 31
            state = torch.from_numpy(state)
            values.append(value)
            log_probs.append(log_prob)
            rewards.append(reward)
            vae_losses.append(vae_loss)
            cur_losses.append(cur_loss)
            mi_losses.append(mi_loss)
            
            
            if done:
                break
        R = torch.zeros(1, 1)
        if not done:
            state_inp = Variable(state.unsqueeze(0)).type(FloatTensor)
            value, _, _ = model((state_inp, (hx, cx)))
            R = value.data

        values.append(Variable(R).type(FloatTensor))
        policy_loss = 0
        value_loss = 0
        scme_loss = 0
        R = Variable(R).type(FloatTensor)
        gae = torch.zeros(1, 1).type(FloatTensor)
        for i in reversed(range(len(rewards))):
            R = args.gamma * R + rewards[i]
            advantage = R - values[i]
            value_loss = value_loss + 0.5 * advantage.pow(2)

            # Generalized Advantage Estimataion
            delta_t = rewards[i] + args.gamma * values[i + 1].data - values[i].data
            gae = gae * args.gamma * args.tau + delta_t

            policy_loss = policy_loss - log_probs[i] * Variable(gae).type(FloatTensor) - args.entropy_coef * entropies[i]
            
            scme_loss = 0.01*vae_losses[i] + cur_losses[i] - mi_losses[i]
        total_loss = args.lambd*(policy_loss + args.value_loss_coef * value_loss)
        
#        print ("Process {} loss :".format(rank), total_loss.data)
        optimizer.zero_grad()
#         cur_optimizer.zero_grad()
        
        (total_loss + scme_loss).backward()
#         (curiosity_loss).backward()
        
        torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
        torch.nn.utils.clip_grad_norm_(scme_model.parameters(), args.max_grad_norm)

        ensure_shared_grads(model, shared_model)
        ensure_shared_grads(scme_model, shared_scme)
        
        optimizer.step()