Example #1
0
    def __init__(self, block, layers, num_classes=1000, in_chans=3,
                 cardinality=1, base_width=64,
                 drop_rate=0.0, block_drop_rate=0.0,
                 global_pool='avg'):
        self.num_classes = num_classes
        self.inplanes = 64
        self.cardinality = cardinality
        self.base_width = base_width
        self.drop_rate = drop_rate
        self.expansion = block.expansion
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(in_chans, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0], drop_rate=block_drop_rate)
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2, drop_rate=block_drop_rate)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2, drop_rate=block_drop_rate)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2, drop_rate=block_drop_rate)
        self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
        self.num_features = 512 * block.expansion
        self.fc = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1.)
                nn.init.constant_(m.bias, 0.)
Example #2
0
 def reset_classifier(self, num_classes, global_pool='avg'):
     self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
     self.num_classes = num_classes
     del self.fc
     if num_classes:
         self.fc = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes)
     else:
         self.fc = None
Example #3
0
    def __init__(self, num_classes=1001, in_chans=3, drop_rate=0.5, global_pool='avg'):
        super(PNASNet5Large, self).__init__()
        self.num_classes = num_classes
        self.num_features = 4320
        self.drop_rate = drop_rate

        self.conv_0 = nn.Sequential(OrderedDict([
            ('conv', nn.Conv2d(in_chans, 96, kernel_size=3, stride=2, bias=False)),
            ('bn', nn.BatchNorm2d(96, eps=0.001))
        ]))
        self.cell_stem_0 = CellStem0(in_channels_left=96, out_channels_left=54,
                                     in_channels_right=96,
                                     out_channels_right=54)
        self.cell_stem_1 = Cell(in_channels_left=96, out_channels_left=108,
                                in_channels_right=270, out_channels_right=108,
                                match_prev_layer_dimensions=True,
                                is_reduction=True)
        self.cell_0 = Cell(in_channels_left=270, out_channels_left=216,
                           in_channels_right=540, out_channels_right=216,
                           match_prev_layer_dimensions=True)
        self.cell_1 = Cell(in_channels_left=540, out_channels_left=216,
                           in_channels_right=1080, out_channels_right=216)
        self.cell_2 = Cell(in_channels_left=1080, out_channels_left=216,
                           in_channels_right=1080, out_channels_right=216)
        self.cell_3 = Cell(in_channels_left=1080, out_channels_left=216,
                           in_channels_right=1080, out_channels_right=216)
        self.cell_4 = Cell(in_channels_left=1080, out_channels_left=432,
                           in_channels_right=1080, out_channels_right=432,
                           is_reduction=True, zero_pad=True)
        self.cell_5 = Cell(in_channels_left=1080, out_channels_left=432,
                           in_channels_right=2160, out_channels_right=432,
                           match_prev_layer_dimensions=True)
        self.cell_6 = Cell(in_channels_left=2160, out_channels_left=432,
                           in_channels_right=2160, out_channels_right=432)
        self.cell_7 = Cell(in_channels_left=2160, out_channels_left=432,
                           in_channels_right=2160, out_channels_right=432)
        self.cell_8 = Cell(in_channels_left=2160, out_channels_left=864,
                           in_channels_right=2160, out_channels_right=864,
                           is_reduction=True)
        self.cell_9 = Cell(in_channels_left=2160, out_channels_left=864,
                           in_channels_right=4320, out_channels_right=864,
                           match_prev_layer_dimensions=True)
        self.cell_10 = Cell(in_channels_left=4320, out_channels_left=864,
                            in_channels_right=4320, out_channels_right=864)
        self.cell_11 = Cell(in_channels_left=4320, out_channels_left=864,
                            in_channels_right=4320, out_channels_right=864)
        self.relu = nn.ReLU()
        self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
        self.last_linear = nn.Linear(self.num_features * self.global_pool.feat_mult(), num_classes)
Example #4
0
    def __init__(self,
                 block,
                 layers,
                 groups,
                 reduction,
                 drop_rate=0.2,
                 in_chans=3,
                 inplanes=128,
                 input_3x3=True,
                 downsample_kernel_size=3,
                 downsample_padding=1,
                 num_classes=1000,
                 global_pool='avg'):
        """
        Parameters
        ----------
        block (nn.Module): Bottleneck class.
            - For SENet154: SEBottleneck
            - For SE-ResNet models: SEResNetBottleneck
            - For SE-ResNeXt models:  SEResNeXtBottleneck
        layers (list of ints): Number of residual blocks for 4 layers of the
            network (layer1...layer4).
        groups (int): Number of groups for the 3x3 convolution in each
            bottleneck block.
            - For SENet154: 64
            - For SE-ResNet models: 1
            - For SE-ResNeXt models:  32
        reduction (int): Reduction ratio for Squeeze-and-Excitation modules.
            - For all models: 16
        dropout_p (float or None): Drop probability for the Dropout layer.
            If `None` the Dropout layer is not used.
            - For SENet154: 0.2
            - For SE-ResNet models: None
            - For SE-ResNeXt models: None
        inplanes (int):  Number of input channels for layer1.
            - For SENet154: 128
            - For SE-ResNet models: 64
            - For SE-ResNeXt models: 64
        input_3x3 (bool): If `True`, use three 3x3 convolutions instead of
            a single 7x7 convolution in layer0.
            - For SENet154: True
            - For SE-ResNet models: False
            - For SE-ResNeXt models: False
        downsample_kernel_size (int): Kernel size for downsampling convolutions
            in layer2, layer3 and layer4.
            - For SENet154: 3
            - For SE-ResNet models: 1
            - For SE-ResNeXt models: 1
        downsample_padding (int): Padding for downsampling convolutions in
            layer2, layer3 and layer4.
            - For SENet154: 1
            - For SE-ResNet models: 0
            - For SE-ResNeXt models: 0
        num_classes (int): Number of outputs in `last_linear` layer.
            - For all models: 1000
        """
        super(SENet, self).__init__()
        self.inplanes = inplanes
        self.num_classes = num_classes
        if input_3x3:
            layer0_modules = [
                ('conv1',
                 nn.Conv2d(in_chans, 64, 3, stride=2, padding=1, bias=False)),
                ('bn1', nn.BatchNorm2d(64)),
                ('relu1', nn.ReLU(inplace=True)),
                ('conv2', nn.Conv2d(64, 64, 3, stride=1, padding=1,
                                    bias=False)),
                ('bn2', nn.BatchNorm2d(64)),
                ('relu2', nn.ReLU(inplace=True)),
                ('conv3',
                 nn.Conv2d(64, inplanes, 3, stride=1, padding=1, bias=False)),
                ('bn3', nn.BatchNorm2d(inplanes)),
                ('relu3', nn.ReLU(inplace=True)),
            ]
        else:
            layer0_modules = [
                ('conv1',
                 nn.Conv2d(in_chans,
                           inplanes,
                           kernel_size=7,
                           stride=2,
                           padding=3,
                           bias=False)),
                ('bn1', nn.BatchNorm2d(inplanes)),
                ('relu1', nn.ReLU(inplace=True)),
            ]
        # To preserve compatibility with Caffe weights `ceil_mode=True`
        # is used instead of `padding=1`.
        layer0_modules.append(('pool', nn.MaxPool2d(3,
                                                    stride=2,
                                                    ceil_mode=True)))
        self.layer0 = nn.Sequential(OrderedDict(layer0_modules))
        self.layer1 = self._make_layer(block,
                                       planes=64,
                                       blocks=layers[0],
                                       groups=groups,
                                       reduction=reduction,
                                       downsample_kernel_size=1,
                                       downsample_padding=0)
        self.layer2 = self._make_layer(
            block,
            planes=128,
            blocks=layers[1],
            stride=2,
            groups=groups,
            reduction=reduction,
            downsample_kernel_size=downsample_kernel_size,
            downsample_padding=downsample_padding)
        self.layer3 = self._make_layer(
            block,
            planes=256,
            blocks=layers[2],
            stride=2,
            groups=groups,
            reduction=reduction,
            downsample_kernel_size=downsample_kernel_size,
            downsample_padding=downsample_padding)
        self.layer4 = self._make_layer(
            block,
            planes=512,
            blocks=layers[3],
            stride=2,
            groups=groups,
            reduction=reduction,
            downsample_kernel_size=downsample_kernel_size,
            downsample_padding=downsample_padding)
        self.avg_pool = SelectAdaptivePool2d(pool_type=global_pool)
        self.drop_rate = drop_rate
        self.num_features = 512 * block.expansion
        self.last_linear = nn.Linear(self.num_features, num_classes)

        for m in self.modules():
            _weight_init(m)
    def __init__(self,
                 block,
                 layers,
                 num_classes=1000,
                 in_chans=3,
                 use_se=False,
                 cardinality=1,
                 base_width=64,
                 stem_width=64,
                 deep_stem=False,
                 block_reduce_first=1,
                 down_kernel_size=1,
                 avg_down=False,
                 dilated=False,
                 norm_layer=nn.BatchNorm2d,
                 drop_rate=0.0,
                 global_pool='avg'):
        self.num_classes = num_classes
        self.inplanes = stem_width * 2 if deep_stem else 64
        self.cardinality = cardinality
        self.base_width = base_width
        self.drop_rate = drop_rate
        self.expansion = block.expansion
        self.dilated = dilated
        super(GluonResNet, self).__init__()

        if not deep_stem:
            self.conv1 = nn.Conv2d(in_chans,
                                   stem_width,
                                   kernel_size=7,
                                   stride=2,
                                   padding=3,
                                   bias=False)
        else:
            conv1_modules = [
                nn.Conv2d(in_chans,
                          stem_width,
                          3,
                          stride=2,
                          padding=1,
                          bias=False),
                norm_layer(stem_width),
                nn.ReLU(),
                nn.Conv2d(stem_width,
                          stem_width,
                          3,
                          stride=1,
                          padding=1,
                          bias=False),
                norm_layer(stem_width),
                nn.ReLU(),
                nn.Conv2d(stem_width,
                          self.inplanes,
                          3,
                          stride=1,
                          padding=1,
                          bias=False),
            ]
            self.conv1 = nn.Sequential(*conv1_modules)
        self.bn1 = norm_layer(self.inplanes)
        self.relu = nn.ReLU()
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        stride_3_4 = 1 if self.dilated else 2
        dilation_3 = 2 if self.dilated else 1
        dilation_4 = 4 if self.dilated else 1
        self.layer1 = self._make_layer(block,
                                       64,
                                       layers[0],
                                       stride=1,
                                       reduce_first=block_reduce_first,
                                       use_se=use_se,
                                       avg_down=avg_down,
                                       down_kernel_size=1,
                                       norm_layer=norm_layer)
        self.layer2 = self._make_layer(block,
                                       128,
                                       layers[1],
                                       stride=2,
                                       reduce_first=block_reduce_first,
                                       use_se=use_se,
                                       avg_down=avg_down,
                                       down_kernel_size=down_kernel_size,
                                       norm_layer=norm_layer)
        self.layer3 = self._make_layer(block,
                                       256,
                                       layers[2],
                                       stride=stride_3_4,
                                       dilation=dilation_3,
                                       reduce_first=block_reduce_first,
                                       use_se=use_se,
                                       avg_down=avg_down,
                                       down_kernel_size=down_kernel_size,
                                       norm_layer=norm_layer)
        self.layer4 = self._make_layer(block,
                                       512,
                                       layers[3],
                                       stride=stride_3_4,
                                       dilation=dilation_4,
                                       reduce_first=block_reduce_first,
                                       use_se=use_se,
                                       avg_down=avg_down,
                                       down_kernel_size=down_kernel_size,
                                       norm_layer=norm_layer)
        self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
        self.num_features = 512 * block.expansion
        self.fc = nn.Linear(self.num_features * self.global_pool.feat_mult(),
                            num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight,
                                        mode='fan_out',
                                        nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1.)
                nn.init.constant_(m.bias, 0.)
    def __init__(self,
                 block_args,
                 num_classes=1000,
                 in_chans=3,
                 stem_size=32,
                 num_features=1280,
                 depth_multiplier=1.0,
                 depth_divisor=8,
                 min_depth=None,
                 bn_momentum=_BN_MOMENTUM_PT_DEFAULT,
                 bn_eps=_BN_EPS_PT_DEFAULT,
                 drop_rate=0.,
                 act_fn=F.relu,
                 se_gate_fn=torch.sigmoid,
                 se_reduce_mid=False,
                 global_pool='avg',
                 head_conv='default',
                 weight_init='goog',
                 folded_bn=False,
                 padding_same=False):
        super(GenMobileNet, self).__init__()
        self.num_classes = num_classes
        self.depth_multiplier = depth_multiplier
        self.drop_rate = drop_rate
        self.act_fn = act_fn
        self.num_features = num_features

        stem_size = _round_channels(stem_size, depth_multiplier, depth_divisor,
                                    min_depth)
        self.conv_stem = sconv2d(in_chans,
                                 stem_size,
                                 3,
                                 padding=_padding_arg(1, padding_same),
                                 stride=2,
                                 bias=folded_bn)
        self.bn1 = None if folded_bn else nn.BatchNorm2d(
            stem_size, momentum=bn_momentum, eps=bn_eps)
        in_chs = stem_size

        builder = _BlockBuilder(depth_multiplier, depth_divisor, min_depth,
                                act_fn, se_gate_fn, se_reduce_mid, bn_momentum,
                                bn_eps, folded_bn, padding_same)
        self.blocks = nn.Sequential(*builder(in_chs, block_args))
        in_chs = builder.in_chs

        if not head_conv or head_conv == 'none':
            self.efficient_head = False
            self.conv_head = None
            assert in_chs == self.num_features
        else:
            self.efficient_head = head_conv == 'efficient'
            self.conv_head = sconv2d(in_chs,
                                     self.num_features,
                                     1,
                                     padding=_padding_arg(0, padding_same),
                                     bias=folded_bn
                                     and not self.efficient_head)
            self.bn2 = None if (folded_bn or self.efficient_head) else \
                nn.BatchNorm2d(self.num_features, momentum=bn_momentum, eps=bn_eps)

        self.global_pool = SelectAdaptivePool2d(pool_type=global_pool)
        self.classifier = nn.Linear(self.num_features, self.num_classes)

        for m in self.modules():
            if weight_init == 'goog':
                _initialize_weight_goog(m)
            else:
                _initialize_weight_default(m)