def main(): """ Main entry point for the application when run from the command line. """ # Timing instance timing = Timing(['Snippet', 'Time [m]', 'Time [s]']) with timing.timeit_context_add('Pre-processing'): # Setup parse options command line current_path = os.path.dirname( os.path.abspath(inspect.getfile(inspect.currentframe()))) parser = args.setup_parser(current_path + '/args/mfbn.json') options = parser.parse_args() args.update_json(options) args.check_output(options) if options.input and options.vertices is None: print('Vertices are required when input is given.') sys.exit(1) # Load bipartite graph with timing.timeit_context_add('Load graph'): source_graph = MGraph() source_graph.load(options.input, options.vertices) # Coarsening with timing.timeit_context_add('Coarsening'): kwargs = dict(reduction_factor=options.reduction_factor, max_levels=options.max_levels, matching=options.matching, similarity=options.similarity, itr=options.itr, upper_bound=options.upper_bound, gmv=options.gmv, tolerance=options.tolerance, reverse=options.reverse, seed_priority=options.seed_priority, threads=options.threads) coarsening = Coarsening(source_graph, **kwargs) coarsening.run() # Save with timing.timeit_context_add('Save'): output = options.output for index, obj in enumerate( zip(coarsening.hierarchy_levels, coarsening.hierarchy_graphs)): level, coarsened_graph = obj index += 1 if options.save_conf or options.show_conf: d = { 'source_input': options.input, 'source_vertices': source_graph['vertices'], 'source_vcount': source_graph.vcount(), 'source_ecount': source_graph.ecount(), 'coarsened_ecount': coarsened_graph.ecount(), 'coarsened_vcount': coarsened_graph.vcount(), 'coarsened_vertices': coarsened_graph['vertices'], 'achieved_levels': coarsened_graph['level'], 'reduction_factor': options.reduction_factor, 'max_levels': options.max_levels, 'similarity': options.similarity, 'matching': options.matching, 'upper_bound': options.upper_bound, 'gmv': options.gmv, 'itr': options.itr, 'level': level } if options.save_conf: with open(output + '-' + str(index) + '-info.json', 'w+') as f: json.dump(d, f, indent=4) if options.show_conf: print(json.dumps(d, indent=4)) if options.save_ncol: coarsened_graph.write(output + '-' + str(index) + '.ncol', format='ncol') if options.save_source: with open(output + '-' + str(index) + '.source', 'w+') as f: for v in coarsened_graph.vs(): f.write(' '.join(map(str, v['source'])) + '\n') if options.save_membership: membership = [0] * (source_graph['vertices'][0] + source_graph['vertices'][1]) for v in coarsened_graph.vs(): for source in v['source']: membership[source] = v.index numpy.savetxt(output + '-' + str(index) + '.membership', membership, fmt='%d') if options.save_predecessor: with open(output + '-' + str(index) + '.predecessor', 'w+') as f: for v in coarsened_graph.vs(): f.write(' '.join(map(str, v['predecessor'])) + '\n') if options.save_successor: numpy.savetxt(output + '-' + str(index) + '.successor', coarsened_graph.vs['successor'], fmt='%d') if options.save_weight: numpy.savetxt(output + '-' + str(index) + '.weight', coarsened_graph.vs['weight'], fmt='%d') if options.save_gml: del coarsened_graph['adjlist'] del coarsened_graph['similarity'] coarsened_graph['layers'] = str(coarsened_graph['layers']) coarsened_graph['vertices'] = ','.join( map(str, coarsened_graph['vertices'])) coarsened_graph['level'] = ','.join( map(str, coarsened_graph['level'])) coarsened_graph.vs['name'] = map( str, range(0, coarsened_graph.vcount())) coarsened_graph.vs['type'] = map(str, coarsened_graph.vs['type']) coarsened_graph.vs['weight'] = map( str, coarsened_graph.vs['weight']) coarsened_graph.vs['successor'] = map( str, coarsened_graph.vs['successor']) for v in coarsened_graph.vs(): v['source'] = ','.join(map(str, v['source'])) v['predecessor'] = ','.join(map(str, v['predecessor'])) coarsened_graph.write(output + '-' + str(index) + '.gml', format='gml') if not options.save_hierarchy: break if options.show_timing: timing.print_tabular() if options.save_timing_csv: timing.save_csv(output + '-timing.csv') if options.save_timing_json: timing.save_json(output + '-timing.json')
for vertex in graph.vs(): member = next(iter(vertex['membership'])) vertex['vertex_color'] = colors[comm2colors[member]] with open(output + '.color', 'w+') as f: for color in colors: f.write(color + '\n') if __name__ == '__main__': # Setup parse options command line current_path = os.path.dirname( os.path.abspath(inspect.getfile(inspect.currentframe()))) parser = args.setup_parser(current_path + '/args/pynetviewer.json') options = parser.parse_args() args.update_json(options) args.check_output(options) # Log instanciation log = helper.initialize_logger(dir='log', output='log') # Check required fields if options.input is None: parser.error('required -f [input] arg.') if options.vertices is None: parser.error('required -v [number of vertices for each layer] arg.') graph = helperigraph.load(options.input, options.vertices,
def __init__(self): """ Initialize the bnoc app For help use: > python bnoc.py --help """ self.timing = Timing(['Snippet', 'Time [m]', 'Time [s]']) with self.timing.timeit_context_add('Pre-processing'): # Setup parse options command line current_path = os.path.dirname( os.path.abspath(inspect.getfile(inspect.currentframe()))) parser = args.setup_parser(current_path + '/args/bnoc.json') self.options = parser.parse_args() args.update_json(self.options) args.check_output(self.options) self.log = helper.initialize_logger(dir='log', output='log') if self.options.save_arff and (self.options.x is not None): self.log.warning( 'Warning: Arff format does not allow overlap in the first layer (parameter x).\ Please use --save_arff=False or supress x parameter.' ) sys.exit(1) self.layers = len(self.options.vertices) self.start_end = [] for layer in range(self.layers): start = sum(self.options.vertices[0:layer]) end = sum(self.options.vertices[0:layer + 1]) - 1 self.start_end.append([start, end]) if self.options.p is None or self.options.balanced is True: self.generate_balanced_probabilities() for p in self.options.p: if str(numpy.sum(round(sum(p), 1))) != str(1.0): self.log.warning( 'Warning: The sum of probabilities p1 must be equal to 1.' ) sys.exit(1) if len(self.options.communities) is None: self.options.communities = [1] * len(self.options.vertices) if self.options.x is not None and isinstance(self.options.x, int): self.options.x = [self.options.x] * self.layers if self.options.y is not None and isinstance(self.options.y, int): self.options.y = [self.options.y] * self.layers if self.options.z is not None and isinstance(self.options.z, int): self.options.z = [self.options.z] * self.layers if all(isinstance(item, tuple) for item in self.options.schema): self.options.schema = [ list(elem) for elem in self.options.schema ] if not all(isinstance(item, list) for item in self.options.schema): it = iter(self.options.schema) self.options.schema = zip(it, it) if self.options.mu is not None and isinstance( self.options.mu, (int, float)): self.options.mu = [self.options.mu] * len(self.options.schema) if self.options.dispersion is not None and isinstance( self.options.dispersion, (int, float)): self.options.dispersion = [self.options.dispersion] * len( self.options.schema) if self.options.noise is not None and isinstance( self.options.noise, (int, float)): self.options.noise = [self.options.noise] * len( self.options.schema) for layer, comm in enumerate(self.options.communities): if comm == 0: self.log.warning( 'The number of communities must be greater than zero.') sys.exit(1) if self.options.communities[layer] > self.options.vertices[ layer]: self.log.warning( 'Warning: The number of communities must be less than the number of vertices.' ) sys.exit(1) if self.options.x is not None and self.options.z is not None: if self.options.z[layer] > self.options.communities[layer]: self.log.warning( 'Warning: Number of vertices of overlapping communities must be less than \ the number of communities in all layers.') sys.exit(1) if sum(self.options.x) > 0 and sum(self.options.z) == 0: self.options.z = [2] * len(self.options.x)
def main(): """ Main entry point for the application when run from the command line. """ # Timing instanciation timing = Timing(['Snippet', 'Time [m]', 'Time [s]']) with timing.timeit_context_add('Pre-processing'): # Setup parse options command line current_path = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parser = args.setup_parser(current_path + '/args/mdr.json') options = parser.parse_args() args.update_json(options) args.check_output(options) # Log instanciation log = helper.initialize_logger(dir='log', output='log') if options.input and options.vertices is None: log.warning('Vertices are required when input is given.') sys.exit(1) # Create default values for optional parameters if options.reduction_factor is None: options.reduction_factor = 0.5 if options.max_levels is None: options.max_levels = 3 if options.matching is None: options.matching = 'greedy_seed_twohops' if options.similarity is None: options.similarity = 'weighted_common_neighbors' # Validation of matching method valid_matching = ['gmb', 'rgmb', 'hem', 'lem', 'rm'] if options.matching.lower() not in valid_matching: log.warning('Matching method is unvalid.') sys.exit(1) # Validation of input extension valid_input = ['.arff', '.dat'] if options.extension not in valid_input: log.warning('Input is unvalid.') sys.exit(1) # Validation of similarity measure valid_similarity = ['common_neighbors', 'weighted_common_neighbors', 'salton', 'preferential_attachment', 'jaccard', 'adamic_adar', 'resource_allocation', 'sorensen', 'hub_promoted', 'hub_depressed', 'leicht_holme_newman', 'weighted_jaccard'] if options.similarity.lower() not in valid_similarity: log.warning('Similarity misure is unvalid.') sys.exit(1) options.vertices = map(int, options.vertices) options.max_levels = int(options.max_levels) options.reduction_factor = float(options.reduction_factor) # Load bipartite graph with timing.timeit_context_add('Load'): if options.extension == '.arff': graph = helperigraph.load_csr(options.input) elif options.extension == '.dat': graph = helperigraph.load_dat(options.input, skip_last_column=options.skip_last_column, skip_rows=options.skip_rows) graph['level'] = 0 # Coarsening with timing.timeit_context_add('Coarsening'): hierarchy_graphs = [] hierarchy_levels = [] while not graph['level'] == options.max_levels: matching = range(graph.vcount()) levels = graph['level'] levels += 1 graph['similarity'] = getattr(Similarity(graph, graph['adjlist']), options.similarity) start = sum(graph['vertices'][0:1]) end = sum(graph['vertices'][0:1 + 1]) if options.matching in ['hem', 'lem', 'rm']: one_mode_graph = graph.weighted_one_mode_projection(vertices) matching_method = getattr(one_mode_graph, options.matching) matching_method(matching, reduction_factor=options.reduction_factor) else: matching_method = getattr(graph, options.matching) matching_method(range(start, end), matching, reduction_factor=options.reduction_factor) coarse = graph.contract(matching) coarse['level'] = levels graph = coarse if options.save_hierarchy or (graph['level'] == options.max_levels): hierarchy_graphs.append(graph) hierarchy_levels.append(levels) # Save with timing.timeit_context_add('Save'): output = options.output for index, obj in enumerate(reversed(zip(hierarchy_levels, hierarchy_graphs))): levels, graph = obj if options.save_conf: with open(output + '-' + str(index) + '.conf', 'w+') as f: d = {} d['source_filename'] = options.input d['source_v0'] = options.vertices[0] d['source_v1'] = options.vertices[1] d['source_vertices'] = options.vertices[0] + options.vertices[1] d['edges'] = graph.ecount() d['vertices'] = graph.vcount() d['reduction_factor'] = options.reduction_factor d['max_levels'] = options.max_levels d['similarity'] = options.similarity d['matching'] = options.matching d['levels'] = levels for layer in range(graph['layers']): vcount = str(len(graph.vs.select(type=layer))) attr = 'v' + str(layer) d[attr] = vcount json.dump(d, f, indent=4) if options.save_ncol: graph.write(output + '-' + str(index) + '.ncol', format='ncol') if options.save_source: with open(output + '-' + str(index) + '.source', 'w+') as f: for v in graph.vs(): f.write(' '.join(map(str, v['source'])) + '\n') if options.save_predecessor: with open(output + '-' + str(index) + '.predecessor', 'w+') as f: for v in graph.vs(): f.write(' '.join(map(str, v['predecessor'])) + '\n') if options.save_successor: numpy.savetxt(output + '-' + str(index) + '.successor', graph.vs['successor'], fmt='%d') if options.save_weight: numpy.savetxt(output + '-' + str(index) + '.weight', graph.vs['weight'], fmt='%d') if options.save_adjacency: numpy.savetxt(output + '-' + str(index) + '.dat', helperigraph.biajcent_matrix(graph), fmt='%.2f') if options.save_gml: del graph['adjlist'] del graph['similarity'] graph['layers'] = str(graph['layers']) graph['vertices'] = ','.join(map(str, graph['vertices'])) graph['level'] = str(graph['level']) graph.vs['name'] = map(str, range(0, graph.vcount())) graph.vs['type'] = map(str, graph.vs['type']) graph.vs['weight'] = map(str, graph.vs['weight']) graph.vs['successor'] = map(str, graph.vs['successor']) for v in graph.vs(): v['source'] = ','.join(map(str, v['source'])) v['predecessor'] = ','.join(map(str, v['predecessor'])) graph.write(output + '-' + str(index) + '.gml', format='gml') if not options.save_hierarchy: break if options.show_timing: timing.print_tabular() if options.save_timing_csv: timing.save_csv(output + '-timing.csv') if options.save_timing_json: timing.save_json(output + '-timing.csv')