def resnest269(pretrained=False, root='~/.encoding/models', **kwargs): model = ResNet(Bottleneck, [3, 30, 48, 8], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=64, avg_down=True, avd=True, avd_first=False, **kwargs) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url( resnest_model_urls['resnest269'], progress=True, check_hash=True)) return model
def resnest200(pretrained=False, root='~/.encoding/models', **kwargs): model = ResNet(Bottleneck, [3, 24, 36, 3], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=64, avg_down=True, avd=True, avd_first=False, **kwargs) if pretrained: assert kwargs['in_channels'] == 3, 'in_channels must be 3 whem pretrained is True' model.load_state_dict(torch.hub.load_state_dict_from_url( resnest_model_urls['resnest200'], progress=True, check_hash=True)) return model