def __init__(self, inplanes, planes, stride=1, downsample=None, norm_type=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = ModuleHelper.BatchNorm2d(norm_type=norm_type)(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = ModuleHelper.BatchNorm2d(norm_type=norm_type)(planes) self.downsample = downsample self.stride = stride
def _make_layer(self, block, planes, blocks, stride=1, norm_type=None): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), ModuleHelper.BatchNorm2d(norm_type=norm_type)(planes * block.expansion), ) layers = [] layers.append( block(self.inplanes, planes, stride, downsample, norm_type=norm_type)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, norm_type=norm_type)) return nn.Sequential(*layers)
def __init__(self, inplanes, planes, stride=1, downsample=None, norm_type=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = ModuleHelper.BatchNorm2d(norm_type=norm_type)(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = ModuleHelper.BatchNorm2d(norm_type=norm_type)(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = ModuleHelper.BatchNorm2d(norm_type=norm_type)(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride
def deepbase_resnet101(num_classes=1000, pretrained=None, norm_type='batchnorm', **kwargs): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on Places """ model = ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, deep_base=True, norm_type=norm_type) model = ModuleHelper.load_model(model, pretrained=pretrained) return model
def resnet34(num_classes=1000, pretrained=None, norm_type='batchnorm', **kwargs): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on Places """ model = ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, deep_base=False, norm_type=norm_type) model = ModuleHelper.load_model(model, pretrained=pretrained) return model
def resnet50(num_classes=1000, pretrained=None, norm_type='batchnorm', **kwargs): # def resnet50(num_classes=1000, pretrained=None, norm_type='encsync_batchnorm', **kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on Places # """ # print("entered") # input() model = ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, deep_base=False, norm_type=norm_type) model = ModuleHelper.load_model(model, pretrained=pretrained) return model
def __init__(self, block, layers, num_classes=1000, deep_base=False, norm_type=None): super(ResNet, self).__init__() self.inplanes = 128 if deep_base else 64 if deep_base: self.prefix = nn.Sequential( OrderedDict([ ('conv1', nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False)), ('bn1', ModuleHelper.BatchNorm2d(norm_type=norm_type)(64)), ('relu1', nn.ReLU(inplace=False)), ('conv2', nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False)), ('bn2', ModuleHelper.BatchNorm2d(norm_type=norm_type)(64)), ('relu2', nn.ReLU(inplace=False)), ('conv3', nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=False)), ('bn3', ModuleHelper.BatchNorm2d(norm_type=norm_type)( self.inplanes)), ('relu3', nn.ReLU(inplace=False)) ])) else: self.prefix = nn.Sequential( OrderedDict([('conv1', nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)), ('bn1', ModuleHelper.BatchNorm2d(norm_type=norm_type)( self.inplanes)), ('relu', nn.ReLU(inplace=False))])) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=False) # change. self.layer1 = self._make_layer(block, 64, layers[0], norm_type=norm_type) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, norm_type=norm_type) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, norm_type=norm_type) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, norm_type=norm_type) self.avgpool = nn.AvgPool2d(7, stride=1) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance( m, ModuleHelper.BatchNorm2d(norm_type=norm_type, ret_cls=True)): m.weight.data.fill_(1) m.bias.data.zero_()